Back to Catalog

Create a domains-index API server with full operation access for AI agents

David AshbyDavid Ashby
477 views
2/3/2026
Official Page

Complete MCP server exposing 14 Domains-Index API operations to AI agents.

⚡ Quick Setup

Need help? Want access to more workflows and even live Q&A sessions with a top verified n8n creator.. All 100% free?

Join the community

  1. Import this workflow into your n8n instance
  2. Credentials Add Domains-Index API credentials
  3. Activate the workflow to start your MCP server
  4. Copy the webhook URL from the MCP trigger node
  5. Connect AI agents using the MCP URL

🔧 How it Works

This workflow converts the Domains-Index API into an MCP-compatible interface for AI agents.

MCP Trigger: Serves as your server endpoint for AI agent requests • HTTP Request Nodes: Handle API calls to /v1 • AI Expressions: Automatically populate parameters via $fromAI() placeholders • Native Integration: Returns responses directly to the AI agent

📋 Available Operations (14 total)

🔧 Domains (9 endpoints)

GET /domains/search: Domains Database Search • GET /domains/tld/{zone_id}: Get TLD records • GET /domains/tld/{zone_id}/download: Download Whole Dataset for TLD • GET /domains/tld/{zone_id}/search: Domains Search for TLD • GET /domains/updates/added: Get added domains, latest if date not specified • GET /domains/updates/added/download: Download added domains, latest if date not specified • GET /domains/updates/deleted: Get deleted domains, latest if date not specified • GET /domains/updates/deleted/download: Download deleted domains, latest if date not specified • GET /domains/updates/list: List of updates

🔧 Info (5 endpoints)

GET /info/api: GET /info/api • GET /info/stat/: Returns overall stagtistics • GET /info/stat/{zone}: Returns statistics for specific zone • GET /info/tld/: Returns overall Tld info • GET /info/tld/{zone}: Returns statistics for specific zone

🤖 AI Integration

Parameter Handling: AI agents automatically provide values for: • Path parameters and identifiers • Query parameters and filters • Request body data • Headers and authentication

Response Format: Native Domains-Index API responses with full data structure

Error Handling: Built-in n8n HTTP request error management

💡 Usage Examples

Connect this MCP server to any AI agent or workflow:

Claude Desktop: Add MCP server URL to configuration • Cursor: Add MCP server SSE URL to configuration • Custom AI Apps: Use MCP URL as tool endpoint • API Integration: Direct HTTP calls to MCP endpoints

✨ Benefits

Zero Setup: No parameter mapping or configuration needed • AI-Ready: Built-in $fromAI() expressions for all parameters • Production Ready: Native n8n HTTP request handling and logging • Extensible: Easily modify or add custom logic

> 🆓 Free for community use! Ready to deploy in under 2 minutes.

Create a Domains Index API Server with Full Operation Access for AI Agents

This n8n workflow sets up a Model Context Protocol (MCP) server that acts as an API endpoint, providing AI agents with full operational access to a domains index. This allows AI agents to interact with and manage domain data through a standardized protocol.

What it does

This workflow simplifies the process of exposing a domains index to AI agents by:

  1. Listening for MCP Requests: It acts as an MCP server, waiting for incoming requests from AI agents.
  2. Providing Operational Access: When an AI agent sends a request, the server is designed to grant full operational access, enabling the agent to perform various actions (e.g., query, add, update, delete) on the domains index.
  3. Facilitating AI-driven Domain Management: By exposing the domains index via MCP, AI agents can autonomously manage and interact with domain data, enabling advanced automation and intelligent operations.

Prerequisites/Requirements

  • n8n Instance: An active n8n instance to host and run the workflow.
  • Model Context Protocol (MCP) compatible AI Agents: AI agents or systems capable of communicating using the Model Context Protocol to interact with this server.
  • Domains Index: An existing "domains index" that the AI agents will interact with. While not explicitly defined in this starter workflow, the subsequent nodes would typically connect to a database, API, or other service holding this domain data.

Setup/Usage

  1. Import the Workflow:
    • Download the provided JSON file.
    • In your n8n instance, click "New" in the workflows list.
    • Click the three dots in the top right corner and select "Import from JSON".
    • Paste the workflow JSON or upload the file.
  2. Configure the MCP Server Trigger:
    • The MCP Server Trigger node (named "MCP Server Trigger") is already configured to listen for incoming requests.
    • You may need to configure the specific endpoint or authentication details depending on your n8n setup and how your AI agents will connect.
  3. Extend the Workflow (Crucial Next Steps):
    • This workflow currently only sets up the trigger. To make it functional, you will need to add subsequent nodes to:
      • Process incoming MCP requests: Parse the requests from the AI agents.
      • Interact with your Domains Index: Connect to your database, API, or service that holds the domain data. This might involve HTTP Request, Database, or custom nodes.
      • Perform operations: Implement the logic for "full operation access" (e.g., read, create, update, delete domains based on the agent's request).
      • Return responses: Format and send back appropriate responses to the AI agents via the MCP protocol.
  4. Activate the Workflow: Once configured, activate the workflow by toggling the "Active" switch in the top right corner of the workflow editor.

Related Templates

AI multi-agent executive team for entrepreneurs with Gemini, Perplexity and WhatsApp

This workflow is an AI-powered multi-agent system built for startup founders and small business owners who want to automate decision-making, accountability, research, and communication, all through WhatsApp. The “virtual executive team,” is designed to help small teams to work smarter. This workflow sends you market analysis, market and sales tips, It can also monitor what your competitors are doing using perplexity (Research agent) and help you stay a head, or make better decisions. And when you feeling stuck with your start-up accountability director is creative enough to break the barrier 🎯 Core Features 🧑‍💼 1. President (Super Agent) Acts as the main controller that coordinates all sub-agents. Routes messages, assigns tasks, and ensures workflow synchronization between the AI Directors. 📊 2. Sales & Marketing Director Uses SerpAPI to search for market opportunities, leads, and trends. Suggests marketing campaigns, keywords, or outreach ideas. Can analyze current engagement metrics to adjust content strategy. 🕵️‍♀️ 3. Business Research Director Powered by Perplexity AI for competitive and market analysis. Monitors competitor moves, social media engagement, and product changes. Provides concise insights to help the founder adapt and stay ahead. ⏰ 4. Accountability Director Keeps the founder and executive team on track. Sends motivational nudges, task reminders, and progress reports. Promotes consistency and discipline — key traits for early-stage success. 🗓️ 5. Executive Secretary Handles scheduling, email drafting, and reminders. Connects with Google Calendar, Gmail, and Sheets through OAuth. Automates follow-ups, meeting summaries, and notifications directly via WhatsApp. 💬 WhatsApp as the Main Interface Interact naturally with your AI team through WhatsApp Business API. All responses, updates, and summaries are delivered to your chat. Ideal for founders who want to manage operations on the go. ⚙️ How It Works Trigger: The workflow starts from a WhatsApp Trigger node (via Meta Developer Account). Routing: The President agent analyzes the incoming message and determines which Director should handle it. Processing: Marketing or sales queries go to the Sales & Marketing Director. Research questions are handled by the Business Research Director. Accountability tasks are assigned to the Accountability Director. Scheduling or communication requests are managed by the Secretary. Collaboration: Each sub-agent returns results to the President, who summarizes and sends the reply back via WhatsApp. Memory: Context is maintained between sessions, ensuring personalized and coherent communication. 🧩 Integrations Required Gemini API – for general intelligence and task reasoning Supabase- for RAG and postgres persistent memory Perplexity API – for business and competitor analysis SerpAPI – for market research and opportunity scouting Google OAuth – to connect Sheets, Calendar, and Gmail WhatsApp Business API – for message triggers and responses 🚀 Benefits Acts like a team of tireless employees available 24/7. Saves time by automating research, reminders, and communication. Enhances accountability and strategy consistency for founders. Keeps operations centralized in a simple WhatsApp interface. 🧰 Setup Steps Create API credentials for: WhatsApp (via Meta Developer Account) Gemini, Perplexity, and SerpAPI Google OAuth (Sheets, Calendar, Gmail) Create a supabase account at supabase Add the credentials in the corresponding n8n nodes. Customize the system prompts for each Director based on your startup’s needs. Activate and start interacting with your virtual executive team on WhatsApp. Use Case You are a small organisation or start-up that can not afford hiring; marketing department, research department and secretar office, then this workflow is for you 💡 Need Customization? Want to tailor it for your startup or integrate with CRM tools like Notion or HubSpot? You can easily extend the workflow or contact the creator for personalized support. Consider adjusting the system prompt to suite your business

ShadrackBy Shadrack
331

🎓 How to transform unstructured email data into structured format with AI agent

This workflow automates the process of extracting structured, usable information from unstructured email messages across multiple platforms. It connects directly to Gmail, Outlook, and IMAP accounts, retrieves incoming emails, and sends their content to an AI-powered parsing agent built on OpenAI GPT models. The AI agent analyzes each email, identifies relevant details, and returns a clean JSON structure containing key fields: From – sender’s email address To – recipient’s email address Subject – email subject line Summary – short AI-generated summary of the email body The extracted information is then automatically inserted into an n8n Data Table, creating a structured database of email metadata and summaries ready for indexing, reporting, or integration with other tools. --- Key Benefits ✅ Full Automation: Eliminates manual reading and data entry from incoming emails. ✅ Multi-Source Integration: Handles data from different email providers seamlessly. ✅ AI-Driven Accuracy: Uses advanced language models to interpret complex or unformatted content. ✅ Structured Storage: Creates a standardized, query-ready dataset from previously unstructured text. ✅ Time Efficiency: Processes emails in real time, improving productivity and response speed. *✅ Scalability: Easily extendable to handle additional sources or extract more data fields. --- How it works This workflow automates the transformation of unstructured email data into a structured, queryable format. It operates through a series of connected steps: Email Triggering: The workflow is initiated by one of three different email triggers (Gmail, Microsoft Outlook, or a generic IMAP account), which constantly monitor for new incoming emails. AI-Powered Parsing & Structuring: When a new email is detected, its raw, unstructured content is passed to a central "Parsing Agent." This agent uses a specified OpenAI language model to intelligently analyze the email text. Data Extraction & Standardization: Following a predefined system prompt, the AI agent extracts key information from the email, such as the sender, recipient, subject, and a generated summary. It then forces the output into a strict JSON structure using a "Structured Output Parser" node, ensuring data consistency. Data Storage: Finally, the clean, structured data (the from, to, subject, and summarize fields) is inserted as a new row into a specified n8n Data Table, creating a searchable and reportable database of email information. --- Set up steps To implement this workflow, follow these configuration steps: Prepare the Data Table: Create a new Data Table within n8n. Define the columns with the following names and string type: From, To, Subject, and Summary. Configure Email Credentials: Set up the credential connections for the email services you wish to use (Gmail OAuth2, Microsoft Outlook OAuth2, and/or IMAP). Ensure the accounts have the necessary permissions to read emails. Configure AI Model Credentials: Set up the OpenAI API credential with a valid API key. The workflow is configured to use the model, but this can be changed in the respective nodes if needed. Connect the Nodes: The workflow canvas is already correctly wired. Visually confirm that the email triggers are connected to the "Parsing Agent," which is connected to the "Insert row" (Data Table) node. Also, ensure the "OpenAI Chat Model" and "Structured Output Parser" are connected to the "Parsing Agent" as its AI model and output parser, respectively. Activate the Workflow: Save the workflow and toggle the "Active" switch to ON. The triggers will begin polling for new emails according to their schedule (e.g., every minute), and the automation will start processing incoming messages. --- Need help customizing? Contact me for consulting and support or add me on Linkedin.

DavideBy Davide
1616

Automated YouTube video uploads with 12h interval scheduling in JST

This workflow automates a batch upload of multiple videos to YouTube, spacing each upload 12 hours apart in Japan Standard Time (UTC+9) and automatically adding them to a playlist. ⚙️ Workflow Logic Manual Trigger — Starts the workflow manually. List Video Files — Uses a shell command to find all .mp4 files under the specified directory (/opt/downloads/单词卡/A1-A2). Sort and Generate Items — Sorts videos by day number (dayXX) extracted from filenames and assigns a sequential order value. Calculate Publish Schedule (+12h Interval) — Computes the next rounded JST hour plus a configurable buffer (default 30 min). Staggers each video’s scheduled time by order × 12 hours. Converts JST back to UTC for YouTube’s publishAt field. Split in Batches (1 per video) — Iterates over each video item. Read Video File — Loads the corresponding video from disk. Upload to YouTube (Scheduled) — Uploads the video privately with the computed publishAtUtc. Add to Playlist — Adds the newly uploaded video to the target playlist. 🕒 Highlights Timezone-safe: Pure UTC ↔ JST conversion avoids double-offset errors. Sequential scheduling: Ensures each upload is 12 hours apart to prevent clustering. Customizable: Change SPANHOURS, BUFFERMIN, or directory paths easily. Retry-ready: Each upload and playlist step has retry logic to handle transient errors. 💡 Typical Use Cases Multi-part educational video series (e.g., A1–A2 English learning). Regular content release cadence without manual scheduling. Automated YouTube publishing pipelines for pre-produced content. --- Author: Zane Category: Automation / YouTube / Scheduler Timezone: JST (UTC+09:00)

ZaneBy Zane
226