Back to Catalog

πŸ”πŸ¦™πŸ€– Private & local Ollama self-hosted AI assistant

Joseph LePageJoseph LePage
60686 views
2/3/2026
Official Page

Transform your local N8N instance into a powerful chat interface using any local & private Ollama model, with zero cloud dependencies ☁️. This workflow creates a structured chat experience that processes messages locally through a language model chain and returns formatted responses πŸ’¬.

How it works πŸ”„

  • πŸ’­ Chat messages trigger the workflow
  • 🧠 Messages are processed through Llama 3.2 via Ollama (or any other Ollama compatible model)
  • πŸ“Š Responses are formatted as structured JSON
  • ⚑ Error handling ensures robust operation

Set up steps πŸ› οΈ

  • πŸ“₯ Install N8N and Ollama
  • βš™οΈ Download Ollama 3.2 model (or other model)
  • πŸ”‘ Configure Ollama API credentials
  • ✨ Import and activate workflow

This template provides a foundation for building AI-powered chat applications while maintaining full control over your data and infrastructure πŸš€.

n8n Local Ollama Self-Hosted AI Assistant

This n8n workflow provides a basic framework for interacting with a self-hosted AI model via Ollama, triggered by a chat message. It demonstrates how to receive a chat input, process it with an Ollama-powered Large Language Model (LLM) chain, and potentially prepare the output for further actions.

What it does

This workflow automates the following steps:

  1. Listens for Chat Messages: It waits for incoming chat messages to trigger the workflow.
  2. Prepares Input (Optional): An "Edit Fields (Set)" node is included, which can be used to transform or prepare the incoming chat message before it's sent to the LLM.
  3. Processes with Ollama LLM: It uses a "Basic LLM Chain" node, configured with an "Ollama Model" node, to process the input chat message. This allows you to leverage a local, self-hosted AI model (like Llama 2, Mistral, etc., running via Ollama) to generate responses or perform AI tasks.

Prerequisites/Requirements

To use this workflow, you will need:

  • n8n instance: A running instance of n8n.
  • Ollama Installation: Ollama must be installed and running on a server accessible by your n8n instance.
  • Ollama Model: At least one AI model (e.g., llama2, mistral) must be pulled and running in Ollama.
  • n8n LangChain Nodes: Ensure the @n8n/n8n-nodes-langchain package is installed in your n8n instance.

Setup/Usage

  1. Import the workflow:
    • Copy the provided JSON code.
    • In your n8n instance, go to "Workflows" and click "New".
    • Click the three dots in the top right corner and select "Import from JSON".
    • Paste the JSON code and click "Import".
  2. Configure the Ollama Model:
    • Locate the "Ollama Model" node.
    • Configure its settings to point to your running Ollama instance (e.g., http://localhost:11434 if it's on the same machine) and specify the model you want to use (e.g., llama2).
  3. Configure the Basic LLM Chain:
    • Review the "Basic LLM Chain" node. You might want to adjust the prompt or other chain parameters depending on your desired AI assistant behavior.
  4. Activate the Workflow:
    • Once configured, activate the workflow by toggling the "Active" switch in the top right corner of the workflow editor.

Now, when a chat message is received by the "When chat message received" trigger, it will be processed by your local Ollama AI model. You would typically extend this workflow to send the AI's response back to the chat platform or another service.

Related Templates

Auto-create TikTok videos with VEED.io AI avatars, ElevenLabs & GPT-4

πŸ’₯ Viral TikTok Video Machine: Auto-Create Videos with Your AI Avatar --- 🎯 Who is this for? This workflow is for content creators, marketers, and agencies who want to use Veed.io’s AI avatar technology to produce short, engaging TikTok videos automatically. It’s ideal for creators who want to appear on camera without recording themselves, and for teams managing multiple brands who need to generate videos at scale. --- βš™οΈ What problem this workflow solves Manually creating videos for TikTok can take hours β€” finding trends, writing scripts, recording, and editing. By combining Veed.io, ElevenLabs, and GPT-4, this workflow transforms a simple Telegram input into a ready-to-post TikTok video featuring your AI avatar powered by Veed.io β€” speaking naturally with your cloned voice. --- πŸš€ What this workflow does This automation links Veed.io’s video-generation API with multiple AI tools: Analyzes TikTok trends via Perplexity AI Writes a 10-second viral script using GPT-4 Generates your voiceover via ElevenLabs Uses Veed.io (Fabric 1.0 via FAL.ai) to animate your avatar and sync the lips to the voice Creates an engaging caption + hashtags for TikTok virality Publishes the video automatically via Blotato TikTok API Logs all results to Google Sheets for tracking --- 🧩 Setup Telegram Bot Create your bot via @BotFather Configure it as the trigger for sending your photo and theme Connect Veed.io Create an account on Veed.io Get your FAL.ai API key (Veed Fabric 1.0 model) Use HTTPS image/audio URLs compatible with Veed Fabric Other APIs Add Perplexity, ElevenLabs, and Blotato TikTok keys Connect your Google Sheet for logging results --- πŸ› οΈ How to customize this workflow Change your Avatar: Upload a new image through Telegram, and Veed.io will generate a new talking version automatically. Modify the Script Style: Adjust the GPT prompt for tone (educational, funny, storytelling). Adjust Voice Tone: Tweak ElevenLabs stability and similarity settings. Expand Platforms: Add Instagram, YouTube Shorts, or X (Twitter) posting nodes. Track Performance: Customize your Google Sheet to measure your most successful Veed.io-based videos. --- 🧠 Expected Outcome In just a few seconds after sending your photo and theme, this workflow β€” powered by Veed.io β€” creates a fully automated TikTok video featuring your AI avatar with natural lip-sync and voice. The result is a continuous stream of viral short videos, made without cameras, editing, or effort. --- βœ… Import the JSON file in n8n, add your API keys (including Veed.io via FAL.ai), and start generating viral TikTok videos starring your AI avatar today! πŸŽ₯ Watch This Tutorial --- πŸ“„ Documentation: Notion Guide Need help customizing? Contact me for consulting and support : Linkedin / Youtube

Dr. FirasBy Dr. Firas
39510

Track competitor SEO keywords with Decodo + GPT-4.1-mini + Google Sheets

This workflow automates competitor keyword research using OpenAI LLM and Decodo for intelligent web scraping. Who this is for SEO specialists, content strategists, and growth marketers who want to automate keyword research and competitive intelligence. Marketing analysts managing multiple clients or websites who need consistent SEO tracking without manual data pulls. Agencies or automation engineers using Google Sheets as an SEO data dashboard for keyword monitoring and reporting. What problem this workflow solves Tracking competitor keywords manually is slow and inconsistent. Most SEO tools provide limited API access or lack contextual keyword analysis. This workflow solves that by: Automatically scraping any competitor’s webpage with Decodo. Using OpenAI GPT-4.1-mini to interpret keyword intent, density, and semantic focus. Storing structured keyword insights directly in Google Sheets for ongoing tracking and trend analysis. What this workflow does Trigger β€” Manually start the workflow or schedule it to run periodically. Input Setup β€” Define the website URL and target country (e.g., https://dev.to, france). Data Scraping (Decodo) β€” Fetch competitor web content and metadata. Keyword Analysis (OpenAI GPT-4.1-mini) Extract primary and secondary keywords. Identify focus topics and semantic entities. Generate a keyword density summary and SEO strength score. Recommend optimization and internal linking opportunities. Data Structuring β€” Clean and convert GPT output into JSON format. Data Storage (Google Sheets) β€” Append structured keyword data to a Google Sheet for long-term tracking. Setup Prerequisites If you are new to Decode, please signup on this link visit.decodo.com n8n account with workflow editor access Decodo API credentials OpenAI API key Google Sheets account connected via OAuth2 Make sure to install the Decodo Community node. Create a Google Sheet Add columns for: primarykeywords, seostrengthscore, keyworddensity_summary, etc. Share with your n8n Google account. Connect Credentials Add credentials for: Decodo API credentials - You need to register, login and obtain the Basic Authentication Token via Decodo Dashboard OpenAI API (for GPT-4o-mini) Google Sheets OAuth2 Configure Input Fields Edit the β€œSet Input Fields” node to set your target site and region. Run the Workflow Click Execute Workflow in n8n. View structured results in your connected Google Sheet. How to customize this workflow Track Multiple Competitors β†’ Use a Google Sheet or CSV list of URLs; loop through them using the Split In Batches node. Add Language Detection β†’ Add a Gemini or GPT node before keyword analysis to detect content language and adjust prompts. Enhance the SEO Report β†’ Expand the GPT prompt to include backlink insights, metadata optimization, or readability checks. Integrate Visualization β†’ Connect your Google Sheet to Looker Studio for SEO performance dashboards. Schedule Auto-Runs β†’ Use the Cron Node to run weekly or monthly for competitor keyword refreshes. Summary This workflow automates competitor keyword research using: Decodo for intelligent web scraping OpenAI GPT-4.1-mini for keyword and SEO analysis Google Sheets for live tracking and reporting It’s a complete AI-powered SEO intelligence pipeline ideal for teams that want actionable insights on keyword gaps, optimization opportunities, and content focus trends, without relying on expensive SEO SaaS tools.

Ranjan DailataBy Ranjan Dailata
161

Generate song lyrics and music from text prompts using OpenAI and Fal.ai Minimax

Spark your creativity instantly in any chatβ€”turn a simple prompt like "heartbreak ballad" into original, full-length lyrics and a professional AI-generated music track, all without leaving your conversation. πŸ“‹ What This Template Does This chat-triggered workflow harnesses AI to generate detailed, genre-matched song lyrics (at least 600 characters) from user messages, then queues them for music synthesis via Fal.ai's minimax-music model. It polls asynchronously until the track is ready, delivering lyrics and audio URL back in chat. Crafts original, structured lyrics with verses, choruses, and bridges using OpenAI Submits to Fal.ai for melody, instrumentation, and vocals aligned to the style Handles long-running generations with smart looping and status checks Returns complete song package (lyrics + audio link) for seamless sharing πŸ”§ Prerequisites n8n account (self-hosted or cloud with chat integration enabled) OpenAI account with API access for GPT models Fal.ai account for AI music generation πŸ”‘ Required Credentials OpenAI API Setup Go to platform.openai.com β†’ API keys (sidebar) Click "Create new secret key" β†’ Name it (e.g., "n8n Songwriter") Copy the key and add to n8n as "OpenAI API" credential type Test by sending a simple chat completion request Fal.ai HTTP Header Auth Setup Sign up at fal.ai β†’ Dashboard β†’ API Keys Generate a new API key β†’ Copy it In n8n, create "HTTP Header Auth" credential: Name="Fal.ai", Header Name="Authorization", Header Value="Key [Your API Key]" Test with a simple GET to their queue endpoint (e.g., /status) βš™οΈ Configuration Steps Import the workflow JSON into your n8n instance Assign OpenAI API credentials to the "OpenAI Chat Model" node Assign Fal.ai HTTP Header Auth to the "Generate Music Track", "Check Generation Status", and "Fetch Final Result" nodes Activate the workflowβ€”chat trigger will appear in your n8n chat interface Test by messaging: "Create an upbeat pop song about road trips" 🎯 Use Cases Content Creators: YouTubers generating custom jingles for videos on the fly, streamlining production from idea to audio export Educators: Music teachers using chat prompts to create era-specific folk tunes for classroom discussions, fostering interactive learning Gift Personalization: Friends crafting anniversary R&B tracks from shared memories via quick chats, delivering emotional audio surprises Artist Brainstorming: Songwriters prototyping hip-hop beats in real-time during sessions, accelerating collaboration and iteration ⚠️ Troubleshooting Invalid JSON from AI Agent: Ensure the system prompt stresses valid JSON; test the agent standalone with a sample query Music Generation Fails (401/403): Verify Fal.ai API key has minimax-music access; check usage quotas in dashboard Status Polling Loops Indefinitely: Bump wait time to 45-60s for complex tracks; inspect fal.ai queue logs for bottlenecks Lyrics Under 600 Characters: Tweak agent prompt to enforce fuller structures like [V1][C][V2][B][C]; verify output length in executions

Daniel NkenchoBy Daniel Nkencho
601