Back to Catalog

Supabase insertion & upsertion & retrieval

RiaRia
28932 views
2/3/2026
Official Page

This is a demo workflow to showcase how to use Supabase to embed a document, retrieve information from the vector store via chat and update the database.

Setup steps:

  • set your credentials for Supabase
  • set your credentials for an AI model of your choice
  • set credentials for any service you want to use to upload documents
  • please follow the guidelines in the workflow itself (Sticky Notes)

Feedback & Questions

If you have any questions or feedback about this workflow - Feel free to get in touch at ria@n8n.io

n8n Workflow: Supabase Vector Store RAG Chatbot

This n8n workflow demonstrates a Retrieval-Augmented Generation (RAG) pattern using Supabase as a vector store to answer questions based on external documents, triggered by a chat message. It integrates OpenAI for embeddings and chat model capabilities.

Description

This workflow simplifies the process of building a RAG-powered chatbot. It allows you to ingest documents (e.g., from Google Drive), process them, store their embeddings in a Supabase vector database, and then use that knowledge base to answer user questions received via a chat interface.

What it does

  1. Triggers on Chat Message: The workflow starts when a chat message is received, acting as the user's query.
  2. Loads Documents: It retrieves documents from a specified Google Drive folder using a Default Data Loader.
  3. Splits Text: The retrieved documents are then split into smaller, manageable chunks using a Recursive Character Text Splitter to optimize for embedding and retrieval.
  4. Generates Embeddings: OpenAI Embeddings are generated for these text chunks.
  5. Stores in Supabase Vector Store: The text chunks and their corresponding embeddings are stored in a Supabase vector database.
  6. Retrieves Relevant Information: For a given chat query, the workflow retrieves the most relevant document chunks from the Supabase Vector Store.
  7. Answers Questions: It uses an OpenAI Chat Model in conjunction with the retrieved information to generate a comprehensive answer to the user's question via a Question and Answer Chain.
  8. Prepares Data (Optional/Placeholder): An "Edit Fields" node is present, likely for data manipulation or transformation, though its specific configuration is not detailed in the provided JSON.

Prerequisites/Requirements

  • n8n Account/Instance: To run the workflow.
  • Supabase Account: With a configured vector database. You will need your Supabase URL and API Key.
  • OpenAI Account: For generating embeddings and using the chat model. You will need an OpenAI API Key.
  • Google Drive Account: If you intend to use the Google Drive document loading functionality. You will need Google Drive credentials configured in n8n.

Setup/Usage

  1. Import the Workflow:
    • Download the provided JSON file.
    • In your n8n instance, go to "Workflows" and click "New".
    • Click the "Import from JSON" button and paste the workflow JSON or upload the file.
  2. Configure Credentials:
    • Locate the "Supabase" node and configure your Supabase credentials (URL and API Key).
    • Locate the "Embeddings OpenAI" and "OpenAI Chat Model" nodes and configure your OpenAI API Key credentials.
    • If using Google Drive, configure your "Google Drive" node with appropriate credentials.
  3. Configure Nodes:
    • Google Drive: Specify the folder or files you wish to load documents from.
    • Recursive Character Text Splitter: Adjust chunk size and overlap as needed for your documents.
    • Supabase Vector Store: Ensure the table name and other settings match your Supabase vector database configuration.
    • Question and Answer Chain: Review the prompt and model settings.
    • Chat Trigger: Configure how your chat messages will be received (e.g., via a specific chat platform integration if you extend the workflow).
  4. Activate the Workflow: Once configured, activate the workflow to start listening for chat messages.
  5. Test: Send a chat message to the configured trigger to test the RAG functionality.

Related Templates

Automate RSS to social media pipeline with AI, Airtable & GetLate for multiple platforms

Overview Automates your complete social media content pipeline: sources articles from Wallabag RSS, generates platform-specific posts with AI, creates contextual images, and publishes via GetLate API. Built with 63 nodes across two workflows to handle LinkedIn, Instagram, and Bluesky—with easy expansion to more platforms. Ideal for: Content marketers, solo creators, agencies, and community managers maintaining a consistent multi-platform presence with minimal manual effort. How It Works Two-Workflow Architecture: Content Aggregation Workflow Monitors Wallabag RSS feeds for tagged articles (to-share-linkedin, to-share-instagram, etc.) Extracts and converts content from HTML to Markdown Stores structured data in Airtable with platform assignment AI Generation & Publishing Workflow Scheduled trigger queries Airtable for unpublished content Routes to platform-specific sub-workflows (LinkedIn, Instagram, Bluesky) LLM generates optimized post text and image prompts based on custom brand parameters Optionally generates AI images and hosts them on Imgbb CDN Publishes via GetLate API (immediate or draft mode) Updates Airtable with publication status and metadata Key Features: Tag-based content routing using Wallabag's native system Swappable AI providers (Groq, OpenAI, Anthropic) Platform-specific optimization (tone, length, hashtags, CTAs) Modular design—duplicate sub-workflows to add new platforms in \~30 minutes Centralized Airtable tracking with 17 data points per post Set Up Steps Setup time: \~45-60 minutes for initial configuration Create accounts and get API keys (\~15 min) Wallabag (with RSS feeds enabled) GetLate (social media publishing) Airtable (create base with provided schema—see sticky notes) LLM provider (Groq, OpenAI, or Anthropic) Image service (Hugging Face, Fal.ai, or Stability AI) Imgbb (image hosting) Configure n8n credentials (\~10 min) Add all API keys in n8n's credential manager Detailed credential setup instructions in workflow sticky notes Set up Airtable database (\~10 min) Create "RSS Feed - Content Store" base Add 19 required fields (schema provided in workflow sticky notes) Get Airtable base ID and API key Customize brand prompts (\~15 min) Edit "Set Custom SMCG Prompt" node for each platform Define brand voice, tone, goals, audience, and image preferences Platform-specific examples provided in sticky notes Configure platform settings (\~10 min) Set GetLate account IDs for each platform Enable/disable image generation per platform Choose immediate publish vs. draft mode Adjust schedule trigger frequency Test and deploy Tag test articles in Wallabag Monitor the first few executions in draft mode Activate workflows when satisfied with the output Important: This is a proof-of-concept template. Test thoroughly with draft mode before production use. Detailed setup instructions, troubleshooting tips, and customization guidance are in the workflow's sticky notes. Technical Details 63 nodes: 9 Airtable operations, 8 HTTP requests, 7 code nodes, 3 LangChain LLM chains, 3 RSS triggers, 3 GetLate publishers Supports: Multiple LLM providers, multiple image generation services, unlimited platforms via modular architecture Tracking: 17 metadata fields per post, including publish status, applied parameters, character counts, hashtags, image URLs Prerequisites n8n instance (self-hosted or cloud) Accounts: Wallabag, GetLate, Airtable, LLM provider, image generation service, Imgbb Basic understanding of n8n workflows and credential configuration Time to customize prompts for your brand voice Detailed documentation, Airtable schema, prompt examples, and troubleshooting guides are in the workflow's sticky notes. Category Tags social-media-automation, ai-content-generation, rss-to-social, multi-platform-posting, getlate-api, airtable-database, langchain, workflow-automation, content-marketing

Mikal Hayden-GatesBy Mikal Hayden-Gates
188

Ai website scraper & company intelligence

AI Website Scraper & Company Intelligence Description This workflow automates the process of transforming any website URL into a structured, intelligent company profile. It's triggered by a form, allowing a user to submit a website and choose between a "basic" or "deep" scrape. The workflow extracts key information (mission, services, contacts, SEO keywords), stores it in a structured Supabase database, and archives a full JSON backup to Google Drive. It also features a secondary AI agent that automatically finds and saves competitors for each company, building a rich, interconnected database of company intelligence. --- Quick Implementation Steps Import the Workflow: Import the provided JSON file into your n8n instance. Install Custom Community Node: You must install the community node from: https://www.npmjs.com/package/n8n-nodes-crawl-and-scrape FIRECRAWL N8N Documentation https://docs.firecrawl.dev/developer-guides/workflow-automation/n8n Install Additional Nodes: n8n-nodes-crawl-and-scrape and n8n-nodes-mcp fire crawl mcp . Set up Credentials: Create credentials in n8n for FIRE CRAWL API,Supabase, Mistral AI, and Google Drive. Configure API Key (CRITICAL): Open the Web Search tool node. Go to Parameters → Headers and replace the hardcoded Tavily AI API key with your own. Configure Supabase Nodes: Assign your Supabase credential to all Supabase nodes. Ensure table names (e.g., companies, competitors) match your schema. Configure Google Drive Nodes: Assign your Google Drive credential to the Google Drive2 and save to Google Drive1 nodes. Select the correct Folder ID. Activate Workflow: Turn on the workflow and open the Webhook URL in the “On form submission” node to access the form. --- What It Does Form Trigger Captures user input: “Website URL” and “Scraping Type” (basic or deep). Scraping Router A Switch node routes the flow: Deep Scraping → AI-based MCP Firecrawler agent. Basic Scraping → Crawlee node. Deep Scraping (Firecrawl AI Agent) Uses Firecrawl and Tavily Web Search. Extracts a detailed JSON profile: mission, services, contacts, SEO keywords, etc. Basic Scraping (Crawlee) Uses Crawl and Scrape node to collect raw text. A Mistral-based AI extractor structures the data into JSON. Data Storage Stores structured data in Supabase tables (companies, company_basicprofiles). Archives a full JSON backup to Google Drive. Automated Competitor Analysis Runs after a deep scrape. Uses Tavily web search to find competitors (e.g., from Crunchbase). Saves competitor data to Supabase, linked by company_id. --- Who's It For Sales & Marketing Teams: Enrich leads with deep company info. Market Researchers: Build structured, searchable company databases. B2B Data Providers: Automate company intelligence collection. Developers: Use as a base for RAG or enrichment pipelines. --- Requirements n8n instance (self-hosted or cloud) Supabase Account: With tables like companies, competitors, social_links, etc. Mistral AI API Key Google Drive Credentials Tavily AI API Key (Optional) Custom Nodes: n8n-nodes-crawl-and-scrape --- How It Works Flow Summary Form Trigger: Captures “Website URL” and “Scraping Type”. Switch Node: deep → MCP Firecrawler (AI Agent). basic → Crawl and Scrape node. Scraping & Extraction: Deep path: Firecrawler → JSON structure. Basic path: Crawlee → Mistral extractor → JSON. Storage: Save JSON to Supabase. Archive in Google Drive. Competitor Analysis (Deep Only): Finds competitors via Tavily. Saves to Supabase competitors table. End: Finishes with a No Operation node. --- How To Set Up Import workflow JSON. Install community nodes (especially n8n-nodes-crawl-and-scrape from npm). Configure credentials (Supabase, Mistral AI, Google Drive). Add your Tavily API key. Connect Supabase and Drive nodes properly. Fix disconnected “basic” path if needed. Activate workflow. Test via the webhook form URL. --- How To Customize Change LLMs: Swap Mistral for OpenAI or Claude. Edit Scraper Prompts: Modify system prompts in AI agent nodes. Change Extraction Schema: Update JSON Schema in extractor nodes. Fix Relational Tables: Add Items node before Supabase inserts for arrays (social links, keywords). Enhance Automation: Add email/slack notifications, or replace form trigger with a Google Sheets trigger. --- Add-ons Automated Trigger: Run on new sheet rows. Notifications: Email or Slack alerts after completion. RAG Integration: Use the Supabase database as a chatbot knowledge source. --- Use Case Examples Sales Lead Enrichment: Instantly get company + competitor data from a URL. Market Research: Collect and compare companies in a niche. B2B Database Creation: Build a proprietary company dataset. --- WORKFLOW IMAGE --- Troubleshooting Guide | Issue | Possible Cause | Solution | |-------|----------------|-----------| | Form Trigger 404 | Workflow not active | Activate the workflow | | Web Search Tool fails | Missing Tavily API key | Replace the placeholder key | | FIRECRAWLER / find competitor fails | Missing MCP node | Install n8n-nodes-mcp | | Basic scrape does nothing | Switch node path disconnected | Reconnect “basic” output | | Supabase node error | Wrong table/column names | Match schema exactly | --- Need Help or More Workflows? Want to customize this workflow for your business or integrate it with your existing tools? Our team at Digital Biz Tech can tailor it precisely to your use case from automation logic to AI-powered enhancements. Contact: shilpa.raju@digitalbiz.tech For more such offerings, visit us: https://www.digitalbiz.tech ---

DIGITAL BIZ TECHBy DIGITAL BIZ TECH
923

Automate YouTube thumbnail creation & social publishing with Templated.io & Blotato

💥 Automate YouTube thumbnail creation from video links (with templated.io) Who is this for? This workflow is designed for content creators, YouTubers, and automation enthusiasts who want to automatically generate stunning YouTube thumbnails and streamline their publishing workflow — all within n8n. If you regularly post videos and spend hours designing thumbnails manually, this automation is built for you. --- What problem is this workflow solving? Creating thumbnails is time-consuming — yet crucial for video performance. This workflow completely automates that process: No more manual design. No more downloading screenshots. No more repetitive uploads. In less than 2 minutes, you can refresh your entire YouTube thumbnail library and make your channel look brand new. --- What this workflow does Once activated, this workflow can: ✅ Receive YouTube video links via Telegram ✅ Extract metadata (title, description, channel info) via YouTube API ✅ Generate a custom thumbnail automatically using Templated.io ✅ Upload the new thumbnail to Google Drive ✅ Log data in Google Sheets ✅ Send email and Telegram notifications when ready ✅ Create and publish AI-generated social posts on LinkedIn, Facebook, and Twitter via Blotato Bonus: You can re-create dozens of YouTube covers in minutes — saving up to 5 hours per week and around $500/month in manual design effort. --- Setup 1️⃣ Get a YouTube Data API v3 key from Google Cloud Console 2️⃣ Create a Templated.io account and get your API key + template ID 3️⃣ Set up a Telegram bot using @BotFather 4️⃣ Create a Google Drive folder and copy the folder ID 5️⃣ Create a Google Sheet with columns: Date, Video ID, Video URL, Title, Thumbnail Link, Status 6️⃣ Get your Blotato API key from the dashboard 7️⃣ Connect your social media accounts to Blotato 8️⃣ Fill all credentials in the Workflow Configuration node 9️⃣ Test by sending a YouTube URL to your Telegram bot --- How to customize this workflow Replace the Templated.io template ID with your own custom thumbnail layout Modify the OpenAI node prompts to change text tone or style Add or remove social platforms in the Blotato section Adjust the wait time (default: 5 minutes) based on template complexity Localize or translate the generated captions as needed --- Expected Outcome With one Telegram message, you’ll receive: A professional custom thumbnail An instant email + Telegram notification A Google Drive link with your ready-to-use design And your social networks will be automatically updated — no manual uploads. --- Credits Thumbnail generation powered by Templated.io Social publishing powered by Blotato Automation orchestrated via n8n --- 👋 Need help or want to customize this? 📩 Contact: LinkedIn 📺 YouTube: @DRFIRASS 🚀 Workshops: Mes Ateliers n8n 🎥 Watch This Tutorial --- 📄 Documentation: Notion Guide Need help customizing? Contact me for consulting and support : Linkedin / Youtube / 🚀 Mes Ateliers n8n

Dr. FirasBy Dr. Firas
2397