Discover company data by name with uProc
Do you want to discover company-related information to enrich a signup process?
This workflow enriches any company by name using the uProc Get Company by Name tool. This tool combines Google Maps and emails research on the internet to return results. You get no results if the company has no presence on Google Maps.
You need to add your credentials (Email and API Key - real -) located at Integration section to n8n.
You can replace node "Create Company Item" with any other supported service returning Company names and countries, like Hubspot, Google Sheets, MySQL, or Typeform.
You can set up the uProc node with several parameters:
- country: the country name you want to use.
- name: the name of the company you need to locate.
Every "uProc" node returns the next fields per every located company:
- name: Contains the company's given name.
- email: Contains the company's given email.
- cif: Contains company's cif number.
- address: Contains company's formatted address.
- city: Contains the city location of the company.
- state: Contains province location of the company.
- county: Contains state location of the company
- country: Contains country location of the company
- zipcode: Contains zipcode code of the company
- phone: Contains phone number of the company
- website: Contains website of the company
- latitude: Contains latitude of the company
- longitude: Contains longitude of the company
Next, you can save results to a CRM or Google Sheets, and prepare returned email or phone to launch an email or telemarketing campaign.
Discover Company Data by Name with uProc
This n8n workflow simplifies the process of enriching company data by leveraging the uProc service. It allows you to input a company name and then uses uProc to discover additional information about that company. The workflow includes a conditional check to ensure that a company name is provided before proceeding with the uProc lookup.
What it does
This workflow automates the following steps:
- Starts the workflow: This is the entry point for the workflow, allowing manual or scheduled execution.
- Prepares company name: A "Function Item" node is used to process the incoming data, likely extracting or formatting the company name for the uProc API.
- Checks for company name: An "If" node evaluates whether a company name is present in the processed data.
- If a company name is found (TRUE branch), the workflow proceeds to look up data using uProc.
- If no company name is found (FALSE branch), the workflow stops, preventing unnecessary uProc calls.
- Discovers company data with uProc: If a company name is provided, the "uProc" node is triggered to search for and retrieve information related to that company.
Prerequisites/Requirements
- n8n Instance: A running n8n instance (cloud or self-hosted).
- uProc Account: An active uProc account with an API key configured as a credential in n8n.
Setup/Usage
- Import the workflow:
- Download the provided JSON file.
- In your n8n instance, go to "Workflows" and click "New".
- Click the "Import from JSON" button and paste the workflow JSON, or upload the file.
- Configure Credentials:
- Locate the "uProc" node.
- Click on the "Credential" field and select your existing uProc API credential or create a new one. You will need your uProc API key for this.
- Activate the workflow:
- Toggle the workflow to "Active" in the top right corner of the editor.
- Run the workflow:
- You can execute the workflow manually by clicking "Execute Workflow" in the n8n editor.
- You will need to provide input data to the "Start" node, typically containing a
companyNamefield, for the workflow to process. The "Function Item" node will then extract and pass this to the "If" node.
Related Templates
Automate Dutch Public Procurement Data Collection with TenderNed
TenderNed Public Procurement What This Workflow Does This workflow automates the collection of public procurement data from TenderNed (the official Dutch tender platform). It: Fetches the latest tender publications from the TenderNed API Retrieves detailed information in both XML and JSON formats for each tender Parses and extracts key information like organization names, titles, descriptions, and reference numbers Filters results based on your custom criteria Stores the data in a database for easy querying and analysis Setup Instructions This template comes with sticky notes providing step-by-step instructions in Dutch and various query options you can customize. Prerequisites TenderNed API Access - Register at TenderNed for API credentials Configuration Steps Set up TenderNed credentials: Add HTTP Basic Auth credentials with your TenderNed API username and password Apply these credentials to the three HTTP Request nodes: "Tenderned Publicaties" "Haal XML Details" "Haal JSON Details" Customize filters: Modify the "Filter op ..." node to match your specific requirements Examples: specific organizations, contract values, regions, etc. How It Works Step 1: Trigger The workflow can be triggered either manually for testing or automatically on a daily schedule. Step 2: Fetch Publications Makes an API call to TenderNed to retrieve a list of recent publications (up to 100 per request). Step 3: Process & Split Extracts the tender array from the response and splits it into individual items for processing. Step 4: Fetch Details For each tender, the workflow makes two parallel API calls: XML endpoint - Retrieves the complete tender documentation in XML format JSON endpoint - Fetches metadata including reference numbers and keywords Step 5: Parse & Merge Parses the XML data and merges it with the JSON metadata and batch information into a single data structure. Step 6: Extract Fields Maps the raw API data to clean, structured fields including: Publication ID and date Organization name Tender title and description Reference numbers (kenmerk, TED number) Step 7: Filter Applies your custom filter criteria to focus on relevant tenders only. Step 8: Store Inserts the processed data into your database for storage and future analysis. Customization Tips Modify API Parameters In the "Tenderned Publicaties" node, you can adjust: offset: Starting position for pagination size: Number of results per request (max 100) Add query parameters for date ranges, status filters, etc. Add More Fields Extend the "Splits Alle Velden" node to extract additional fields from the XML/JSON data, such as: Contract value estimates Deadline dates CPV codes (procurement classification) Contact information Integrate Notifications Add a Slack, Email, or Discord node after the filter to get notified about new matching tenders. Incremental Updates Modify the workflow to only fetch new tenders by: Storing the last execution timestamp Adding date filters to the API query Only processing publications newer than the last run Troubleshooting No data returned? Verify your TenderNed API credentials are correct Check that you have setup youre filter proper Need help setting this up or interested in a complete tender analysis solution? Get in touch 🔗 LinkedIn – Wessel Bulte
🎓 How to transform unstructured email data into structured format with AI agent
This workflow automates the process of extracting structured, usable information from unstructured email messages across multiple platforms. It connects directly to Gmail, Outlook, and IMAP accounts, retrieves incoming emails, and sends their content to an AI-powered parsing agent built on OpenAI GPT models. The AI agent analyzes each email, identifies relevant details, and returns a clean JSON structure containing key fields: From – sender’s email address To – recipient’s email address Subject – email subject line Summary – short AI-generated summary of the email body The extracted information is then automatically inserted into an n8n Data Table, creating a structured database of email metadata and summaries ready for indexing, reporting, or integration with other tools. --- Key Benefits ✅ Full Automation: Eliminates manual reading and data entry from incoming emails. ✅ Multi-Source Integration: Handles data from different email providers seamlessly. ✅ AI-Driven Accuracy: Uses advanced language models to interpret complex or unformatted content. ✅ Structured Storage: Creates a standardized, query-ready dataset from previously unstructured text. ✅ Time Efficiency: Processes emails in real time, improving productivity and response speed. *✅ Scalability: Easily extendable to handle additional sources or extract more data fields. --- How it works This workflow automates the transformation of unstructured email data into a structured, queryable format. It operates through a series of connected steps: Email Triggering: The workflow is initiated by one of three different email triggers (Gmail, Microsoft Outlook, or a generic IMAP account), which constantly monitor for new incoming emails. AI-Powered Parsing & Structuring: When a new email is detected, its raw, unstructured content is passed to a central "Parsing Agent." This agent uses a specified OpenAI language model to intelligently analyze the email text. Data Extraction & Standardization: Following a predefined system prompt, the AI agent extracts key information from the email, such as the sender, recipient, subject, and a generated summary. It then forces the output into a strict JSON structure using a "Structured Output Parser" node, ensuring data consistency. Data Storage: Finally, the clean, structured data (the from, to, subject, and summarize fields) is inserted as a new row into a specified n8n Data Table, creating a searchable and reportable database of email information. --- Set up steps To implement this workflow, follow these configuration steps: Prepare the Data Table: Create a new Data Table within n8n. Define the columns with the following names and string type: From, To, Subject, and Summary. Configure Email Credentials: Set up the credential connections for the email services you wish to use (Gmail OAuth2, Microsoft Outlook OAuth2, and/or IMAP). Ensure the accounts have the necessary permissions to read emails. Configure AI Model Credentials: Set up the OpenAI API credential with a valid API key. The workflow is configured to use the model, but this can be changed in the respective nodes if needed. Connect the Nodes: The workflow canvas is already correctly wired. Visually confirm that the email triggers are connected to the "Parsing Agent," which is connected to the "Insert row" (Data Table) node. Also, ensure the "OpenAI Chat Model" and "Structured Output Parser" are connected to the "Parsing Agent" as its AI model and output parser, respectively. Activate the Workflow: Save the workflow and toggle the "Active" switch to ON. The triggers will begin polling for new emails according to their schedule (e.g., every minute), and the automation will start processing incoming messages. --- Need help customizing? Contact me for consulting and support or add me on Linkedin.
Automate RSS to social media pipeline with AI, Airtable & GetLate for multiple platforms
Overview Automates your complete social media content pipeline: sources articles from Wallabag RSS, generates platform-specific posts with AI, creates contextual images, and publishes via GetLate API. Built with 63 nodes across two workflows to handle LinkedIn, Instagram, and Bluesky—with easy expansion to more platforms. Ideal for: Content marketers, solo creators, agencies, and community managers maintaining a consistent multi-platform presence with minimal manual effort. How It Works Two-Workflow Architecture: Content Aggregation Workflow Monitors Wallabag RSS feeds for tagged articles (to-share-linkedin, to-share-instagram, etc.) Extracts and converts content from HTML to Markdown Stores structured data in Airtable with platform assignment AI Generation & Publishing Workflow Scheduled trigger queries Airtable for unpublished content Routes to platform-specific sub-workflows (LinkedIn, Instagram, Bluesky) LLM generates optimized post text and image prompts based on custom brand parameters Optionally generates AI images and hosts them on Imgbb CDN Publishes via GetLate API (immediate or draft mode) Updates Airtable with publication status and metadata Key Features: Tag-based content routing using Wallabag's native system Swappable AI providers (Groq, OpenAI, Anthropic) Platform-specific optimization (tone, length, hashtags, CTAs) Modular design—duplicate sub-workflows to add new platforms in \~30 minutes Centralized Airtable tracking with 17 data points per post Set Up Steps Setup time: \~45-60 minutes for initial configuration Create accounts and get API keys (\~15 min) Wallabag (with RSS feeds enabled) GetLate (social media publishing) Airtable (create base with provided schema—see sticky notes) LLM provider (Groq, OpenAI, or Anthropic) Image service (Hugging Face, Fal.ai, or Stability AI) Imgbb (image hosting) Configure n8n credentials (\~10 min) Add all API keys in n8n's credential manager Detailed credential setup instructions in workflow sticky notes Set up Airtable database (\~10 min) Create "RSS Feed - Content Store" base Add 19 required fields (schema provided in workflow sticky notes) Get Airtable base ID and API key Customize brand prompts (\~15 min) Edit "Set Custom SMCG Prompt" node for each platform Define brand voice, tone, goals, audience, and image preferences Platform-specific examples provided in sticky notes Configure platform settings (\~10 min) Set GetLate account IDs for each platform Enable/disable image generation per platform Choose immediate publish vs. draft mode Adjust schedule trigger frequency Test and deploy Tag test articles in Wallabag Monitor the first few executions in draft mode Activate workflows when satisfied with the output Important: This is a proof-of-concept template. Test thoroughly with draft mode before production use. Detailed setup instructions, troubleshooting tips, and customization guidance are in the workflow's sticky notes. Technical Details 63 nodes: 9 Airtable operations, 8 HTTP requests, 7 code nodes, 3 LangChain LLM chains, 3 RSS triggers, 3 GetLate publishers Supports: Multiple LLM providers, multiple image generation services, unlimited platforms via modular architecture Tracking: 17 metadata fields per post, including publish status, applied parameters, character counts, hashtags, image URLs Prerequisites n8n instance (self-hosted or cloud) Accounts: Wallabag, GetLate, Airtable, LLM provider, image generation service, Imgbb Basic understanding of n8n workflows and credential configuration Time to customize prompts for your brand voice Detailed documentation, Airtable schema, prompt examples, and troubleshooting guides are in the workflow's sticky notes. Category Tags social-media-automation, ai-content-generation, rss-to-social, multi-platform-posting, getlate-api, airtable-database, langchain, workflow-automation, content-marketing