Automated news monitoring with Claude 4 AI analysis for Discord & Google News
Who's it for
Marketing teams, business intelligence professionals, competitive analysts, and executives who need consistent industry monitoring with AI-powered analysis and automated team distribution via Discord.
What it does
This intelligent workflow automatically monitors multiple industry topics, scrapes and analyzes relevant news articles using Claude AI, and delivers professionally formatted intelligence reports to your Discord channel. The system provides weekly automated monitoring cycles with personalized bot communication and comprehensive content analysis.
How it works
The workflow follows a sophisticated 7-phase automation process: Scheduled Activation: Triggers weekly monitoring cycles (default: Mondays at 9 AM) Query Management: Retrieves monitoring topics from centralized Google Sheets configuration News Discovery: Executes comprehensive Google News searches using SerpAPI for each configured topic Content Extraction: Scrapes full article content from top 3 sources per topic using Firecrawl AI Analysis: Processes scraped content using Claude 4 Sonnet for intelligent synthesis and formatting Discord Optimization: Automatically segments content to comply with Discord's 2000-character message limits Automated Delivery: Posts formatted intelligence reports to Discord channel with branded "Claptrap" bot personality
Requirements
Google Sheets account for query management SerpAPI account for Google News access Firecrawl account for article content extraction Anthropic API access for Claude 4 Sonnet Discord bot with proper channel permissions Scheduled execution capability (cron-based trigger)
How to set up
Step 1: Configure Google Sheets query management
Create monitoring sheet: Set up Google Sheets document with "Query" sheet Add search topics: Include industry keywords, competitor names, and relevant search terms Sheet structure: Simple column format with "Query" header containing search terms Access permissions: Ensure n8n has read access to the Google Sheets document
Step 2: Configure API credentials
Set up the following credentials in n8n: Google Sheets OAuth2: For accessing query configuration sheet SerpAPI: For Google News search functionality with proper rate limits Firecrawl API: For reliable article content extraction across various websites Anthropic API: For Claude 4 Sonnet access with sufficient token limits Discord Bot API: With message posting permissions in target channel
Step 3: Customize scheduling settings
Cron expression: Default set to "0 9 * * 1" (Mondays at 9 AM) Frequency options: Adjust for daily, weekly, or custom monitoring cycles Timezone considerations: Configure according to team's working hours Execution timing: Ensure adequate processing time for multiple topics
Step 4: Configure Discord integration
Set up Discord delivery settings: Guild ID: Target Discord server (currently: 919951151888236595) Channel ID: Specific monitoring channel (currently: 1334455789284364309) Bot permissions: Message posting, embed suppression capabilities Brand personality: Customize "Claptrap" bot messaging style and tone
Step 5: Customize content analysis
Configure AI analysis parameters: Analysis depth: Currently processes top 3 articles per topic Content format: Structured markdown format with consistent styling Language settings: Currently configured for French output (easily customizable) Quality controls: Error handling for inaccessible articles and content
How to customize the workflow
Query management expansion
Topic categories: Organize queries by industry, competitor, or strategic focus areas Keyword optimization: Refine search terms based on result quality and relevance Dynamic queries: Implement time-based or event-triggered query modifications Multi-language support: Add international keyword variations for global monitoring
Advanced content processing
Article quantity: Modify from 3 to more articles per topic based on analysis needs Content filtering: Add quality scoring and relevance filtering for article selection Source preferences: Implement preferred publisher lists or source quality weighting Content enrichment: Add sentiment analysis, trend identification, or competitive positioning
Discord delivery enhancements
Rich formatting: Implement Discord embeds, reactions, or interactive elements Multi-channel distribution: Route different topics to specialized Discord channels Alert levels: Add priority-based messaging for urgent industry developments Archive functionality: Create searchable message threads or database storage
Integration expansions
Slack compatibility: Replace or supplement Discord with Slack notifications Email reports: Add formatted email distribution for executive summaries Database storage: Implement persistent storage for historical analysis and trending API endpoints: Create webhook endpoints for third-party system integration
AI analysis customization
Analysis templates: Create topic-specific analysis frameworks and formatting Competitive focus: Enhance competitor mention detection and analysis depth Trend identification: Implement cross-topic trend analysis and strategic insights Summary levels: Create executive summaries alongside detailed technical analysis
Advanced monitoring features
Intelligent content curation
The system provides sophisticated content management: Relevance scoring: Automatic ranking of articles by topic relevance and publication authority Duplicate detection: Prevents redundant coverage of the same story across different sources Content quality assessment: Filters low-quality or promotional content automatically Source diversity: Ensures coverage from multiple perspectives and publication types
Error handling and reliability
Graceful degradation: Continues processing even if individual articles fail to scrape Retry mechanisms: Automatic retry logic for temporary API failures or network issues Content fallbacks: Uses article snippets when full content extraction fails Notification continuity: Ensures Discord delivery even with partial content processing
Results interpretation
Intelligence report structure
Each monitoring cycle delivers: Topic-specific summaries: Individual analysis for each configured search query Source attribution: Complete citation with publication date, source, and URL Structured formatting: Consistent presentation optimized for quick scanning Professional analysis: AI-generated insights maintaining factual accuracy and business context
Performance analytics
Monitor system effectiveness through: Processing metrics: Track successful article extraction and analysis rates Content quality: Assess relevance and usefulness of delivered intelligence Team engagement: Monitor Discord channel activity and report utilization System reliability: Track execution success rates and error patterns
Use cases
Competitive intelligence
Market monitoring: Track competitor announcements, product launches, and strategic moves Industry trends: Identify emerging technologies, regulatory changes, and market shifts Partnership tracking: Monitor alliance formations, acquisitions, and strategic partnerships Leadership changes: Track executive movements and organizational restructuring
Strategic planning support
Market research: Continuous intelligence gathering for strategic decision-making Risk assessment: Early warning system for industry disruptions and regulatory changes Opportunity identification: Spot emerging markets, technologies, and business opportunities Brand monitoring: Track industry perception and competitive positioning
Team collaboration enhancement
Knowledge sharing: Centralized distribution of relevant industry intelligence Discussion facilitation: Provide common information baseline for strategic discussions Decision support: Deliver timely intelligence for business planning and strategy sessions Competitive awareness: Keep teams informed about competitive landscape changes
Workflow limitations
Language dependency: Currently optimized for French analysis output (easily customizable) Processing capacity: Limited to 3 articles per query (configurable based on API limits) Platform specificity: Configured for Discord delivery (adaptable to other platforms) Scheduling constraints: Fixed weekly schedule (customizable via cron expressions) Content access: Dependent on article accessibility and website compatibility with Firecrawl API dependencies: Requires active subscriptions and proper rate limit management for all integrated services
Automated News Monitoring with AI Analysis for Discord
This n8n workflow automates the process of fetching the latest news, analyzing it with an AI model (Anthropic's Claude), and then posting the summarized and analyzed news to a Discord channel. It also logs the processed news into a Google Sheet for historical tracking.
What it does
This workflow streamlines news consumption and sharing by:
- Triggering on a schedule: The workflow runs periodically (e.g., daily, hourly) to check for new news.
- Fetching news from Google Sheets: It reads a list of news articles (presumably from a previous step not included in this JSON, or a pre-populated list) from a specified Google Sheet.
- Processing news in batches: To manage API limits and processing time, the news articles are processed in batches.
- Analyzing news with AI: For each news article, it uses an Anthropic Chat Model (like Claude) via a Basic LLM Chain to generate a summary or extract key information.
- Aggregating results: After AI analysis, the results for each batch are combined.
- Posting to Discord: The AI-analyzed news summaries are then posted as messages to a designated Discord channel.
- Logging to Google Sheets: The processed news, including the AI analysis, is logged back into a Google Sheet for record-keeping.
Prerequisites/Requirements
To use this workflow, you will need:
- n8n Instance: A running n8n instance to import and execute the workflow.
- Google Sheets Account: Configured credentials for Google Sheets to read and write data. You'll need to specify the Spreadsheet ID and Sheet Name.
- Anthropic API Key: Credentials for Anthropic (e.g., Claude) to power the AI analysis.
- Discord Webhook URL or Bot Token: Configured credentials for Discord to post messages to a channel.
Setup/Usage
- Import the workflow: Copy the provided JSON and import it into your n8n instance.
- Configure Credentials:
- Google Sheets: Set up your Google Sheets credentials.
- Anthropic Chat Model: Configure your Anthropic API key in the "Anthropic Chat Model" node.
- Discord: Set up your Discord credentials (e.g., Bot Token or Webhook URL) in the "Discord" node and specify the channel ID.
- Review Node Configurations:
- Schedule Trigger: Adjust the schedule to your desired frequency (e.g., every hour, once a day).
- Google Sheets (Read): Ensure the "Spreadsheet ID" and "Sheet Name" are correctly set to fetch your news articles.
- Loop Over Items (Split in Batches): Adjust the batch size if needed.
- Code: This node might contain custom JavaScript logic. Review it to understand its purpose and adjust if necessary.
- Basic LLM Chain: Review the prompt used for the AI analysis to ensure it extracts the desired information from your news articles.
- Google Sheets (Write): Ensure the "Spreadsheet ID" and "Sheet Name" are correctly set for logging the processed news.
- Discord: Verify the message content and channel where the news will be posted.
- Activate the workflow: Once configured, activate the workflow to start automated news monitoring.
Related Templates
Automate RSS to social media pipeline with AI, Airtable & GetLate for multiple platforms
Overview Automates your complete social media content pipeline: sources articles from Wallabag RSS, generates platform-specific posts with AI, creates contextual images, and publishes via GetLate API. Built with 63 nodes across two workflows to handle LinkedIn, Instagram, and Bluesky—with easy expansion to more platforms. Ideal for: Content marketers, solo creators, agencies, and community managers maintaining a consistent multi-platform presence with minimal manual effort. How It Works Two-Workflow Architecture: Content Aggregation Workflow Monitors Wallabag RSS feeds for tagged articles (to-share-linkedin, to-share-instagram, etc.) Extracts and converts content from HTML to Markdown Stores structured data in Airtable with platform assignment AI Generation & Publishing Workflow Scheduled trigger queries Airtable for unpublished content Routes to platform-specific sub-workflows (LinkedIn, Instagram, Bluesky) LLM generates optimized post text and image prompts based on custom brand parameters Optionally generates AI images and hosts them on Imgbb CDN Publishes via GetLate API (immediate or draft mode) Updates Airtable with publication status and metadata Key Features: Tag-based content routing using Wallabag's native system Swappable AI providers (Groq, OpenAI, Anthropic) Platform-specific optimization (tone, length, hashtags, CTAs) Modular design—duplicate sub-workflows to add new platforms in \~30 minutes Centralized Airtable tracking with 17 data points per post Set Up Steps Setup time: \~45-60 minutes for initial configuration Create accounts and get API keys (\~15 min) Wallabag (with RSS feeds enabled) GetLate (social media publishing) Airtable (create base with provided schema—see sticky notes) LLM provider (Groq, OpenAI, or Anthropic) Image service (Hugging Face, Fal.ai, or Stability AI) Imgbb (image hosting) Configure n8n credentials (\~10 min) Add all API keys in n8n's credential manager Detailed credential setup instructions in workflow sticky notes Set up Airtable database (\~10 min) Create "RSS Feed - Content Store" base Add 19 required fields (schema provided in workflow sticky notes) Get Airtable base ID and API key Customize brand prompts (\~15 min) Edit "Set Custom SMCG Prompt" node for each platform Define brand voice, tone, goals, audience, and image preferences Platform-specific examples provided in sticky notes Configure platform settings (\~10 min) Set GetLate account IDs for each platform Enable/disable image generation per platform Choose immediate publish vs. draft mode Adjust schedule trigger frequency Test and deploy Tag test articles in Wallabag Monitor the first few executions in draft mode Activate workflows when satisfied with the output Important: This is a proof-of-concept template. Test thoroughly with draft mode before production use. Detailed setup instructions, troubleshooting tips, and customization guidance are in the workflow's sticky notes. Technical Details 63 nodes: 9 Airtable operations, 8 HTTP requests, 7 code nodes, 3 LangChain LLM chains, 3 RSS triggers, 3 GetLate publishers Supports: Multiple LLM providers, multiple image generation services, unlimited platforms via modular architecture Tracking: 17 metadata fields per post, including publish status, applied parameters, character counts, hashtags, image URLs Prerequisites n8n instance (self-hosted or cloud) Accounts: Wallabag, GetLate, Airtable, LLM provider, image generation service, Imgbb Basic understanding of n8n workflows and credential configuration Time to customize prompts for your brand voice Detailed documentation, Airtable schema, prompt examples, and troubleshooting guides are in the workflow's sticky notes. Category Tags social-media-automation, ai-content-generation, rss-to-social, multi-platform-posting, getlate-api, airtable-database, langchain, workflow-automation, content-marketing
Ai website scraper & company intelligence
AI Website Scraper & Company Intelligence Description This workflow automates the process of transforming any website URL into a structured, intelligent company profile. It's triggered by a form, allowing a user to submit a website and choose between a "basic" or "deep" scrape. The workflow extracts key information (mission, services, contacts, SEO keywords), stores it in a structured Supabase database, and archives a full JSON backup to Google Drive. It also features a secondary AI agent that automatically finds and saves competitors for each company, building a rich, interconnected database of company intelligence. --- Quick Implementation Steps Import the Workflow: Import the provided JSON file into your n8n instance. Install Custom Community Node: You must install the community node from: https://www.npmjs.com/package/n8n-nodes-crawl-and-scrape FIRECRAWL N8N Documentation https://docs.firecrawl.dev/developer-guides/workflow-automation/n8n Install Additional Nodes: n8n-nodes-crawl-and-scrape and n8n-nodes-mcp fire crawl mcp . Set up Credentials: Create credentials in n8n for FIRE CRAWL API,Supabase, Mistral AI, and Google Drive. Configure API Key (CRITICAL): Open the Web Search tool node. Go to Parameters → Headers and replace the hardcoded Tavily AI API key with your own. Configure Supabase Nodes: Assign your Supabase credential to all Supabase nodes. Ensure table names (e.g., companies, competitors) match your schema. Configure Google Drive Nodes: Assign your Google Drive credential to the Google Drive2 and save to Google Drive1 nodes. Select the correct Folder ID. Activate Workflow: Turn on the workflow and open the Webhook URL in the “On form submission” node to access the form. --- What It Does Form Trigger Captures user input: “Website URL” and “Scraping Type” (basic or deep). Scraping Router A Switch node routes the flow: Deep Scraping → AI-based MCP Firecrawler agent. Basic Scraping → Crawlee node. Deep Scraping (Firecrawl AI Agent) Uses Firecrawl and Tavily Web Search. Extracts a detailed JSON profile: mission, services, contacts, SEO keywords, etc. Basic Scraping (Crawlee) Uses Crawl and Scrape node to collect raw text. A Mistral-based AI extractor structures the data into JSON. Data Storage Stores structured data in Supabase tables (companies, company_basicprofiles). Archives a full JSON backup to Google Drive. Automated Competitor Analysis Runs after a deep scrape. Uses Tavily web search to find competitors (e.g., from Crunchbase). Saves competitor data to Supabase, linked by company_id. --- Who's It For Sales & Marketing Teams: Enrich leads with deep company info. Market Researchers: Build structured, searchable company databases. B2B Data Providers: Automate company intelligence collection. Developers: Use as a base for RAG or enrichment pipelines. --- Requirements n8n instance (self-hosted or cloud) Supabase Account: With tables like companies, competitors, social_links, etc. Mistral AI API Key Google Drive Credentials Tavily AI API Key (Optional) Custom Nodes: n8n-nodes-crawl-and-scrape --- How It Works Flow Summary Form Trigger: Captures “Website URL” and “Scraping Type”. Switch Node: deep → MCP Firecrawler (AI Agent). basic → Crawl and Scrape node. Scraping & Extraction: Deep path: Firecrawler → JSON structure. Basic path: Crawlee → Mistral extractor → JSON. Storage: Save JSON to Supabase. Archive in Google Drive. Competitor Analysis (Deep Only): Finds competitors via Tavily. Saves to Supabase competitors table. End: Finishes with a No Operation node. --- How To Set Up Import workflow JSON. Install community nodes (especially n8n-nodes-crawl-and-scrape from npm). Configure credentials (Supabase, Mistral AI, Google Drive). Add your Tavily API key. Connect Supabase and Drive nodes properly. Fix disconnected “basic” path if needed. Activate workflow. Test via the webhook form URL. --- How To Customize Change LLMs: Swap Mistral for OpenAI or Claude. Edit Scraper Prompts: Modify system prompts in AI agent nodes. Change Extraction Schema: Update JSON Schema in extractor nodes. Fix Relational Tables: Add Items node before Supabase inserts for arrays (social links, keywords). Enhance Automation: Add email/slack notifications, or replace form trigger with a Google Sheets trigger. --- Add-ons Automated Trigger: Run on new sheet rows. Notifications: Email or Slack alerts after completion. RAG Integration: Use the Supabase database as a chatbot knowledge source. --- Use Case Examples Sales Lead Enrichment: Instantly get company + competitor data from a URL. Market Research: Collect and compare companies in a niche. B2B Database Creation: Build a proprietary company dataset. --- WORKFLOW IMAGE --- Troubleshooting Guide | Issue | Possible Cause | Solution | |-------|----------------|-----------| | Form Trigger 404 | Workflow not active | Activate the workflow | | Web Search Tool fails | Missing Tavily API key | Replace the placeholder key | | FIRECRAWLER / find competitor fails | Missing MCP node | Install n8n-nodes-mcp | | Basic scrape does nothing | Switch node path disconnected | Reconnect “basic” output | | Supabase node error | Wrong table/column names | Match schema exactly | --- Need Help or More Workflows? Want to customize this workflow for your business or integrate it with your existing tools? Our team at Digital Biz Tech can tailor it precisely to your use case from automation logic to AI-powered enhancements. Contact: shilpa.raju@digitalbiz.tech For more such offerings, visit us: https://www.digitalbiz.tech ---
Automated YouTube video uploads with 12h interval scheduling in JST
This workflow automates a batch upload of multiple videos to YouTube, spacing each upload 12 hours apart in Japan Standard Time (UTC+9) and automatically adding them to a playlist. ⚙️ Workflow Logic Manual Trigger — Starts the workflow manually. List Video Files — Uses a shell command to find all .mp4 files under the specified directory (/opt/downloads/单词卡/A1-A2). Sort and Generate Items — Sorts videos by day number (dayXX) extracted from filenames and assigns a sequential order value. Calculate Publish Schedule (+12h Interval) — Computes the next rounded JST hour plus a configurable buffer (default 30 min). Staggers each video’s scheduled time by order × 12 hours. Converts JST back to UTC for YouTube’s publishAt field. Split in Batches (1 per video) — Iterates over each video item. Read Video File — Loads the corresponding video from disk. Upload to YouTube (Scheduled) — Uploads the video privately with the computed publishAtUtc. Add to Playlist — Adds the newly uploaded video to the target playlist. 🕒 Highlights Timezone-safe: Pure UTC ↔ JST conversion avoids double-offset errors. Sequential scheduling: Ensures each upload is 12 hours apart to prevent clustering. Customizable: Change SPANHOURS, BUFFERMIN, or directory paths easily. Retry-ready: Each upload and playlist step has retry logic to handle transient errors. 💡 Typical Use Cases Multi-part educational video series (e.g., A1–A2 English learning). Regular content release cadence without manual scheduling. Automated YouTube publishing pipelines for pre-produced content. --- Author: Zane Category: Automation / YouTube / Scheduler Timezone: JST (UTC+09:00)