Publish HTML content with GitHub Gist and HTML preview
📌 Who’s it for
This subworkflow is designed for developers, AI engineers, or automation builders who generate dynamic HTML content in their workflows (e.g. reports, dashboards, emails) and want a simple way to host and share it via a clean URL, without spinning up infrastructure or uploading to a CMS.
It’s especially useful when combined with AI agents that generate HTML content as part of a larger automated pipeline.
⚙️ What it does
This subworkflow:
- Accepts raw HTML content as input.
- Creates a new GitHub Gist with that content.
- Returns the shareable Gist URL, which can then be sent via Slack, Telegram, email, etc.
The result is a lightweight, fast, and free way to publish AI-generated HTML (such as reports, articles, or formatted data outputs) to the web.
🛠️ How to set it up
- Add this subworkflow to any parent workflow where HTML is generated.
- Pass in a string of valid HTML via the
htmlinput parameter. - Configure the GitHub credentials in the HTTP node using an access token with
gistscope.
✅ Requirements
- GitHub account and personal access token with
gistpermissions
🔧 How to customize
- Change the filename (
report.html) if your use case needs a different format or extension. - Add metadata to the Gist (e.g., description, tags).
n8n Workflow: Publish HTML Content with GitHub Gist and HTML Preview
This n8n workflow is designed to facilitate the publication of HTML content by leveraging GitHub Gist and providing a preview mechanism. It acts as a foundational component, likely intended to be triggered by another workflow, to process and prepare HTML data for external use.
What it does
This workflow performs the following key steps:
- Listens for External Execution: It starts by waiting to be triggered by another n8n workflow, indicating it's part of a larger automation process.
- Edits Fields: It includes a "Set" node, suggesting that it will transform or add data fields to the incoming information. This could involve preparing the HTML content, adding metadata, or structuring the data for subsequent steps (which would be in a connected workflow).
- Makes an HTTP Request: It is configured to make an HTTP request. While the specific details are not present in this JSON snippet (like URL, method, body), this node is typically used to interact with external APIs. In the context of the directory name ("publish-html-content-with-github-gist-and-html-preview"), this HTTP Request node would likely be responsible for interacting with the GitHub Gist API to create or update a Gist.
Prerequisites/Requirements
- n8n Instance: You need a running n8n instance to import and execute this workflow.
- GitHub Account (likely): Based on the workflow's intended purpose (publishing with GitHub Gist), a GitHub account and potentially a Personal Access Token with Gist creation/update permissions would be required for the HTTP Request node in a fully configured workflow.
- HTML Content: The workflow expects to receive HTML content as input from the triggering workflow.
Setup/Usage
- Import the workflow: Download the provided JSON and import it into your n8n instance.
- Configure the "Edit Fields" node: Adjust the "Edit Fields" (Set) node to transform or prepare your HTML content as needed. This might involve renaming fields, adding static data, or performing basic data manipulation.
- Configure the "HTTP Request" node:
- Specify the URL for the GitHub Gist API (e.g.,
https://api.github.com/gists). - Set the HTTP Method (e.g.,
POSTfor creating a new Gist,PATCHfor updating). - Configure Authentication using a GitHub Personal Access Token (PAT) as a Bearer Token or Basic Authentication.
- Construct the Request Body with the HTML content and any other necessary Gist parameters (e.g.,
description,public,files).
- Specify the URL for the GitHub Gist API (e.g.,
- Connect to a triggering workflow: This workflow is designed to be executed by another workflow. Ensure you have a parent workflow that uses the "Execute Workflow" node to trigger this workflow, passing the necessary HTML content as input.
- Activate the workflow: Once configured, activate the workflow to make it ready for execution.
Related Templates
Generate song lyrics and music from text prompts using OpenAI and Fal.ai Minimax
Spark your creativity instantly in any chat—turn a simple prompt like "heartbreak ballad" into original, full-length lyrics and a professional AI-generated music track, all without leaving your conversation. 📋 What This Template Does This chat-triggered workflow harnesses AI to generate detailed, genre-matched song lyrics (at least 600 characters) from user messages, then queues them for music synthesis via Fal.ai's minimax-music model. It polls asynchronously until the track is ready, delivering lyrics and audio URL back in chat. Crafts original, structured lyrics with verses, choruses, and bridges using OpenAI Submits to Fal.ai for melody, instrumentation, and vocals aligned to the style Handles long-running generations with smart looping and status checks Returns complete song package (lyrics + audio link) for seamless sharing 🔧 Prerequisites n8n account (self-hosted or cloud with chat integration enabled) OpenAI account with API access for GPT models Fal.ai account for AI music generation 🔑 Required Credentials OpenAI API Setup Go to platform.openai.com → API keys (sidebar) Click "Create new secret key" → Name it (e.g., "n8n Songwriter") Copy the key and add to n8n as "OpenAI API" credential type Test by sending a simple chat completion request Fal.ai HTTP Header Auth Setup Sign up at fal.ai → Dashboard → API Keys Generate a new API key → Copy it In n8n, create "HTTP Header Auth" credential: Name="Fal.ai", Header Name="Authorization", Header Value="Key [Your API Key]" Test with a simple GET to their queue endpoint (e.g., /status) ⚙️ Configuration Steps Import the workflow JSON into your n8n instance Assign OpenAI API credentials to the "OpenAI Chat Model" node Assign Fal.ai HTTP Header Auth to the "Generate Music Track", "Check Generation Status", and "Fetch Final Result" nodes Activate the workflow—chat trigger will appear in your n8n chat interface Test by messaging: "Create an upbeat pop song about road trips" 🎯 Use Cases Content Creators: YouTubers generating custom jingles for videos on the fly, streamlining production from idea to audio export Educators: Music teachers using chat prompts to create era-specific folk tunes for classroom discussions, fostering interactive learning Gift Personalization: Friends crafting anniversary R&B tracks from shared memories via quick chats, delivering emotional audio surprises Artist Brainstorming: Songwriters prototyping hip-hop beats in real-time during sessions, accelerating collaboration and iteration ⚠️ Troubleshooting Invalid JSON from AI Agent: Ensure the system prompt stresses valid JSON; test the agent standalone with a sample query Music Generation Fails (401/403): Verify Fal.ai API key has minimax-music access; check usage quotas in dashboard Status Polling Loops Indefinitely: Bump wait time to 45-60s for complex tracks; inspect fal.ai queue logs for bottlenecks Lyrics Under 600 Characters: Tweak agent prompt to enforce fuller structures like [V1][C][V2][B][C]; verify output length in executions
Synchronizing WooCommerce inventory and creating products with Google Gemini AI and BrowserAct
Synchronize WooCommerce Inventory & Create Products with Gemini AI & BrowserAct This sophisticated n8n template automates WooCommerce inventory management by scraping supplier data, updating existing products, and intelligently creating new ones with AI-formatted descriptions. This workflow is essential for e-commerce operators, dropshippers, and inventory managers who need to ensure their product pricing and stock levels are synchronized with multiple third-party suppliers, minimizing overselling and maximizing profit. --- Self-Hosted Only This Workflow uses a community contribution and is designed and tested for self-hosted n8n instances only. --- How it works The workflow is typically run by a Schedule Trigger (though a Manual Trigger is also shown) to check stock automatically. It reads a list of suppliers and their inventory page URLs from a central Google Sheet. The workflow loops through each supplier: A BrowserAct node scrapes the current stock and price data from the supplier's inventory page. A Code node parses this bulk data into individual product items. It then loops through each individual product found. The workflow checks WooCommerce to see if the product already exists based on its name. If the product exists: It proceeds to update the existing product's price and stock quantity. If the product DOES NOT exist: An If node checks if the missing product's category matches a predefined type (optional filtering). If it passes the filter, a second BrowserAct workflow scrapes detailed product attributes from a dedicated product page (e.g., DigiKey). An AI Agent (Gemini) transforms these attributes into a specific, styled HTML table for the product description. Finally, the product is created in WooCommerce with all scraped details and the AI-generated description. Error Handling: Multiple Slack nodes are configured to alert your team immediately if any scraping task fails or if the product update/creation process encounters an issue. Note: This workflow does not support image uploads for new products. To enable this functionality, you must modify both the n8n and BrowserAct workflows. --- Requirements BrowserAct API account for web scraping BrowserAct n8n Community Node -> (n8n Nodes BrowserAct) BrowserAct templates named “WooCommerce Inventory & Stock Synchronization” and “WooCommerce Product Data Reconciliation” Google Sheets credentials for the supplier list WooCommerce credentials for product management Google Gemini account for the AI Agent Slack credentials for error alerts --- Need Help? How to Find Your BrowseAct API Key & Workflow ID How to Connect n8n to Browseract How to Use & Customize BrowserAct Templates How to Use the BrowserAct N8N Community Node --- Workflow Guidance and Showcase STOP Overselling! Auto-Sync WooCommerce Inventory from ANY Supplier
Automate RSS to social media pipeline with AI, Airtable & GetLate for multiple platforms
Overview Automates your complete social media content pipeline: sources articles from Wallabag RSS, generates platform-specific posts with AI, creates contextual images, and publishes via GetLate API. Built with 63 nodes across two workflows to handle LinkedIn, Instagram, and Bluesky—with easy expansion to more platforms. Ideal for: Content marketers, solo creators, agencies, and community managers maintaining a consistent multi-platform presence with minimal manual effort. How It Works Two-Workflow Architecture: Content Aggregation Workflow Monitors Wallabag RSS feeds for tagged articles (to-share-linkedin, to-share-instagram, etc.) Extracts and converts content from HTML to Markdown Stores structured data in Airtable with platform assignment AI Generation & Publishing Workflow Scheduled trigger queries Airtable for unpublished content Routes to platform-specific sub-workflows (LinkedIn, Instagram, Bluesky) LLM generates optimized post text and image prompts based on custom brand parameters Optionally generates AI images and hosts them on Imgbb CDN Publishes via GetLate API (immediate or draft mode) Updates Airtable with publication status and metadata Key Features: Tag-based content routing using Wallabag's native system Swappable AI providers (Groq, OpenAI, Anthropic) Platform-specific optimization (tone, length, hashtags, CTAs) Modular design—duplicate sub-workflows to add new platforms in \~30 minutes Centralized Airtable tracking with 17 data points per post Set Up Steps Setup time: \~45-60 minutes for initial configuration Create accounts and get API keys (\~15 min) Wallabag (with RSS feeds enabled) GetLate (social media publishing) Airtable (create base with provided schema—see sticky notes) LLM provider (Groq, OpenAI, or Anthropic) Image service (Hugging Face, Fal.ai, or Stability AI) Imgbb (image hosting) Configure n8n credentials (\~10 min) Add all API keys in n8n's credential manager Detailed credential setup instructions in workflow sticky notes Set up Airtable database (\~10 min) Create "RSS Feed - Content Store" base Add 19 required fields (schema provided in workflow sticky notes) Get Airtable base ID and API key Customize brand prompts (\~15 min) Edit "Set Custom SMCG Prompt" node for each platform Define brand voice, tone, goals, audience, and image preferences Platform-specific examples provided in sticky notes Configure platform settings (\~10 min) Set GetLate account IDs for each platform Enable/disable image generation per platform Choose immediate publish vs. draft mode Adjust schedule trigger frequency Test and deploy Tag test articles in Wallabag Monitor the first few executions in draft mode Activate workflows when satisfied with the output Important: This is a proof-of-concept template. Test thoroughly with draft mode before production use. Detailed setup instructions, troubleshooting tips, and customization guidance are in the workflow's sticky notes. Technical Details 63 nodes: 9 Airtable operations, 8 HTTP requests, 7 code nodes, 3 LangChain LLM chains, 3 RSS triggers, 3 GetLate publishers Supports: Multiple LLM providers, multiple image generation services, unlimited platforms via modular architecture Tracking: 17 metadata fields per post, including publish status, applied parameters, character counts, hashtags, image URLs Prerequisites n8n instance (self-hosted or cloud) Accounts: Wallabag, GetLate, Airtable, LLM provider, image generation service, Imgbb Basic understanding of n8n workflows and credential configuration Time to customize prompts for your brand voice Detailed documentation, Airtable schema, prompt examples, and troubleshooting guides are in the workflow's sticky notes. Category Tags social-media-automation, ai-content-generation, rss-to-social, multi-platform-posting, getlate-api, airtable-database, langchain, workflow-automation, content-marketing