Back to Catalog

Export Jamf policies to Slack as CSV for instant auditing

Jean-Marie Rizkallah Jean-Marie Rizkallah
105 views
2/3/2026
Official Page

🧩 Jamf Policies Export to Slack

Quickly export and review your entire Jamf policy configuration—including triggers, frequencies, and scope—directly in Slack. This enables IT and security teams to audit policy setups without logging into Jamf or generating reports manually.

❗The Problem

Jamf Pro lacks a straightforward way to quickly review or share a list of all configured policies, including key attributes like frequency, scope, or triggers. Security teams often need this for audit or compliance reviews, but navigating Jamf’s UI or exporting via the API is time-consuming.

🔧 This Fixes It

This workflow fetches all policies, extracts the most relevant fields, compiles them into a csv file, and posts that readble file into a designated Slack channel—automatically or on demand.

✅ Prerequisites

• A Jamf Pro API key (OAuth2) with read access to policies • A Slack app with permission to post files into your chosen channel

🔍 How it works

• Manually trigger or use the webhook to initiate the flow • Retrieve all policies from Jamf via the XML API • Convert the XML response into JSON • Split and loop through each policy ID • Retrieve detailed data for each policy • Format relevant fields (ID, name, trigger, scope, etc.) • Convert the final data set into an .csv file • Upload the file to your Slack channel

⚙️ Set up steps

• Takes ~10 minutes to configure • Set the Jamf BaseURL in the “Jamf Server” node • Configure Jamf OAuth2 credentials in the HTTP Request nodes • Adjust the fields for export in the “Set-fields” node • Set your Slack credentials and target channel in the “Post to Slack” node • Optional: Customize the exported fields or filename

🔄 Automation Ready

Schedule this flow daily/weekly, or tie it to change events to keep your team informed.

Export Jamf Policies to Slack as CSV for Instant Auditing

This n8n workflow simplifies the process of auditing Jamf Pro policies by automatically fetching them, transforming the data into a readable CSV format, and posting the file directly to a Slack channel. This provides a quick and accessible way to review your Jamf policies without manual intervention.

What it does

  1. Triggers Manually: The workflow is initiated by a manual trigger, allowing you to run it on demand.
  2. Fetches Jamf Policies: It makes an HTTP request to your Jamf Pro API endpoint to retrieve a list of all policies.
  3. Parses XML Response: The raw XML data received from the Jamf API is parsed into a structured JSON format.
  4. Extracts Policy Details: It iterates through the parsed XML, extracting relevant details for each policy.
  5. Converts to CSV: The extracted policy data is then converted into a CSV file.
  6. Posts to Slack: Finally, the generated CSV file is uploaded to a specified Slack channel, making it available for instant review and auditing.

Prerequisites/Requirements

  • n8n Instance: A running n8n instance.
  • Jamf Pro Instance: Access to a Jamf Pro instance with API enabled.
  • Jamf Pro API Credentials: An API user with permissions to read policies in Jamf Pro.
  • Slack Workspace: A Slack workspace where you want to post the CSV file.
  • Slack API Token: A Slack API token with permissions to upload files and post messages to the desired channel.

Setup/Usage

  1. Import the Workflow:
    • Copy the provided JSON workflow definition.
    • In your n8n instance, click "New" to create a new workflow.
    • Click the "Import from JSON" button and paste the copied JSON.
  2. Configure Credentials:
    • HTTP Request (Node ID: 19):
      • Update the URL to your Jamf Pro API endpoint for policies (e.g., https://your-jamf-instance.jamfcloud.com/JSSResource/policies).
      • Set the Authentication method (e.g., "Basic Auth" with your Jamf API username and password, or "Header Auth" if using a bearer token).
    • Slack (Node ID: 40):
      • Select or create a new Slack API credential. This will require a Slack Bot Token or User Token with files:write and chat:write scopes.
      • Specify the Channel where the CSV should be posted (e.g., #jamf-audits).
  3. Activate the Workflow:
    • Once all credentials and configurations are set, activate the workflow by toggling the "Active" switch in the top right corner of the workflow editor.
  4. Execute the Workflow:
    • Click the "Execute Workflow" button on the "Manual Trigger" node (Node ID: 838) to run the workflow on demand.

The workflow will then fetch your Jamf policies, generate a CSV, and post it to your configured Slack channel.

Related Templates

Automate Dutch Public Procurement Data Collection with TenderNed

TenderNed Public Procurement What This Workflow Does This workflow automates the collection of public procurement data from TenderNed (the official Dutch tender platform). It: Fetches the latest tender publications from the TenderNed API Retrieves detailed information in both XML and JSON formats for each tender Parses and extracts key information like organization names, titles, descriptions, and reference numbers Filters results based on your custom criteria Stores the data in a database for easy querying and analysis Setup Instructions This template comes with sticky notes providing step-by-step instructions in Dutch and various query options you can customize. Prerequisites TenderNed API Access - Register at TenderNed for API credentials Configuration Steps Set up TenderNed credentials: Add HTTP Basic Auth credentials with your TenderNed API username and password Apply these credentials to the three HTTP Request nodes: "Tenderned Publicaties" "Haal XML Details" "Haal JSON Details" Customize filters: Modify the "Filter op ..." node to match your specific requirements Examples: specific organizations, contract values, regions, etc. How It Works Step 1: Trigger The workflow can be triggered either manually for testing or automatically on a daily schedule. Step 2: Fetch Publications Makes an API call to TenderNed to retrieve a list of recent publications (up to 100 per request). Step 3: Process & Split Extracts the tender array from the response and splits it into individual items for processing. Step 4: Fetch Details For each tender, the workflow makes two parallel API calls: XML endpoint - Retrieves the complete tender documentation in XML format JSON endpoint - Fetches metadata including reference numbers and keywords Step 5: Parse & Merge Parses the XML data and merges it with the JSON metadata and batch information into a single data structure. Step 6: Extract Fields Maps the raw API data to clean, structured fields including: Publication ID and date Organization name Tender title and description Reference numbers (kenmerk, TED number) Step 7: Filter Applies your custom filter criteria to focus on relevant tenders only. Step 8: Store Inserts the processed data into your database for storage and future analysis. Customization Tips Modify API Parameters In the "Tenderned Publicaties" node, you can adjust: offset: Starting position for pagination size: Number of results per request (max 100) Add query parameters for date ranges, status filters, etc. Add More Fields Extend the "Splits Alle Velden" node to extract additional fields from the XML/JSON data, such as: Contract value estimates Deadline dates CPV codes (procurement classification) Contact information Integrate Notifications Add a Slack, Email, or Discord node after the filter to get notified about new matching tenders. Incremental Updates Modify the workflow to only fetch new tenders by: Storing the last execution timestamp Adding date filters to the API query Only processing publications newer than the last run Troubleshooting No data returned? Verify your TenderNed API credentials are correct Check that you have setup youre filter proper Need help setting this up or interested in a complete tender analysis solution? Get in touch 🔗 LinkedIn – Wessel Bulte

Wessel BulteBy Wessel Bulte
247

AI-powered code review with linting, red-marked corrections in Google Sheets & Slack

Advanced Code Review Automation (AI + Lint + Slack) Who’s it for For software engineers, QA teams, and tech leads who want to automate intelligent code reviews with both AI-driven suggestions and rule-based linting — all managed in Google Sheets with instant Slack summaries. How it works This workflow performs a two-layer review system: Lint Check: Runs a lightweight static analysis to find common issues (e.g., use of var, console.log, unbalanced braces). AI Review: Sends valid code to Gemini AI, which provides human-like review feedback with severity classification (Critical, Major, Minor) and visual highlights (red/orange tags). Formatter: Combines lint and AI results, calculating an overall score (0–10). Aggregator: Summarizes results for quick comparison. Google Sheets Writer: Appends results to your review log. Slack Notification: Posts a concise summary (e.g., number of issues and average score) to your team’s channel. How to set up Connect Google Sheets and Slack credentials in n8n. Replace placeholders (<YOURSPREADSHEETID>, <YOURSHEETGIDORNAME>, <YOURSLACKCHANNEL_ID>). Adjust the AI review prompt or lint rules as needed. Activate the workflow — reviews will start automatically whenever new code is added to the sheet. Requirements Google Sheets and Slack integrations enabled A configured AI node (Gemini, OpenAI, or compatible) Proper permissions to write to your target Google Sheet How to customize Add more linting rules (naming conventions, spacing, forbidden APIs) Extend the AI prompt for project-specific guidelines Customize the Slack message formatting Export analytics to a dashboard (e.g., Notion or Data Studio) Why it’s valuable This workflow brings realistic, team-oriented AI-assisted code review to n8n — combining the speed of automated linting with the nuance of human-style feedback. It saves time, improves code quality, and keeps your team’s review history transparent and centralized.

higashiyama By higashiyama
90

🎓 How to transform unstructured email data into structured format with AI agent

This workflow automates the process of extracting structured, usable information from unstructured email messages across multiple platforms. It connects directly to Gmail, Outlook, and IMAP accounts, retrieves incoming emails, and sends their content to an AI-powered parsing agent built on OpenAI GPT models. The AI agent analyzes each email, identifies relevant details, and returns a clean JSON structure containing key fields: From – sender’s email address To – recipient’s email address Subject – email subject line Summary – short AI-generated summary of the email body The extracted information is then automatically inserted into an n8n Data Table, creating a structured database of email metadata and summaries ready for indexing, reporting, or integration with other tools. --- Key Benefits ✅ Full Automation: Eliminates manual reading and data entry from incoming emails. ✅ Multi-Source Integration: Handles data from different email providers seamlessly. ✅ AI-Driven Accuracy: Uses advanced language models to interpret complex or unformatted content. ✅ Structured Storage: Creates a standardized, query-ready dataset from previously unstructured text. ✅ Time Efficiency: Processes emails in real time, improving productivity and response speed. *✅ Scalability: Easily extendable to handle additional sources or extract more data fields. --- How it works This workflow automates the transformation of unstructured email data into a structured, queryable format. It operates through a series of connected steps: Email Triggering: The workflow is initiated by one of three different email triggers (Gmail, Microsoft Outlook, or a generic IMAP account), which constantly monitor for new incoming emails. AI-Powered Parsing & Structuring: When a new email is detected, its raw, unstructured content is passed to a central "Parsing Agent." This agent uses a specified OpenAI language model to intelligently analyze the email text. Data Extraction & Standardization: Following a predefined system prompt, the AI agent extracts key information from the email, such as the sender, recipient, subject, and a generated summary. It then forces the output into a strict JSON structure using a "Structured Output Parser" node, ensuring data consistency. Data Storage: Finally, the clean, structured data (the from, to, subject, and summarize fields) is inserted as a new row into a specified n8n Data Table, creating a searchable and reportable database of email information. --- Set up steps To implement this workflow, follow these configuration steps: Prepare the Data Table: Create a new Data Table within n8n. Define the columns with the following names and string type: From, To, Subject, and Summary. Configure Email Credentials: Set up the credential connections for the email services you wish to use (Gmail OAuth2, Microsoft Outlook OAuth2, and/or IMAP). Ensure the accounts have the necessary permissions to read emails. Configure AI Model Credentials: Set up the OpenAI API credential with a valid API key. The workflow is configured to use the model, but this can be changed in the respective nodes if needed. Connect the Nodes: The workflow canvas is already correctly wired. Visually confirm that the email triggers are connected to the "Parsing Agent," which is connected to the "Insert row" (Data Table) node. Also, ensure the "OpenAI Chat Model" and "Structured Output Parser" are connected to the "Parsing Agent" as its AI model and output parser, respectively. Activate the Workflow: Save the workflow and toggle the "Active" switch to ON. The triggers will begin polling for new emails according to their schedule (e.g., every minute), and the automation will start processing incoming messages. --- Need help customizing? Contact me for consulting and support or add me on Linkedin.

DavideBy Davide
1616