๐งโ๐ Test your data access techniques with progressive expression challenges
How it works
This template is a hands-on, practical exam designed to help you master n8n Expressionsโthe key to accessing and manipulating data in your workflows.
If the ๐ Expressions Tutorial Template was the theory lesson, this is the practical driving test. You'll learn how to navigate through complex data structures to get the exact piece of information you need. All challenges will reference a single "Source Data" node, which acts as our data "map".
The test is a series of six sequential challenges that build in complexity:
- Basic Access: Getting a simple value from an object.
- Array Access: Targeting a specific item in a list.
- Nested Object Access: Reaching data inside another object.
- Array of Objects: Combining array and object skills to get a specific value from a list of objects.
- Using JavaScript: Applying simple JavaScript functions (like
.toUpperCase()) to your data. - Combining Text & Expressions: Creating dynamic strings that mix static text with data from previous nodes.
For each challenge, you'll write an expression in a "Test" node. When you execute the workflow, an IF node will instantly validate your answer, giving you a green path for success or a red path with a hint if you need to try again.
Set up steps
Setup time: < 1 minute
This workflow is a self-contained test and requires no setup or credentials.
- Read the instructions on the main sticky note to understand the goal.
- Start with the first challenge, "Test - Basic Access". Modify the node by writing the correct expression in the value field, according to the instructions on the purple sticky note.
- Click "Execute Workflow".
- If the execution path is green, you've passed! The next "Test" node in the sequence will automatically be enabled for you to continue. If the path is red, read the hint in the error message and try again.
- Repeat the process until you reach the final success message and become an expressions pro.
Good Luck!
n8n Workflow: Basic Data Transformation and Conditional Logic Example
This n8n workflow demonstrates a fundamental pattern of receiving data, applying conditional logic, performing a simple data transformation, and handling potential errors. It serves as a good starting point for understanding how to route data based on conditions and modify it within a workflow.
What it does
This workflow performs the following steps:
- Manual Trigger: The workflow is initiated manually when you click the 'Execute workflow' button in n8n.
- Edit Fields (Set): It then proceeds to a "Set" node, which is configured to modify or add fields to the incoming data. Note: As per the JSON, no specific fields are configured for modification, so it will pass the data through as is unless configured.
- Conditional Logic (If): The workflow then evaluates the data using an "If" node. This node is designed to route data based on whether a condition is true or false.
- True Branch: If the condition in the "If" node evaluates to
true, the data flows to a "No Operation, do nothing" node. This node simply passes the data through without any changes and can be used as a placeholder or for debugging. - False Branch: If the condition in the "If" node evaluates to
false, the data flows to a "Stop and Error" node, which will halt the workflow and report an error.
- True Branch: If the condition in the "If" node evaluates to
- HTML (Optional Transformation): A disconnected "HTML" node is present in the workflow. While currently not connected to the main flow, it suggests a potential future step for parsing or generating HTML content from the data.
- Sticky Note: A "Sticky Note" is included for documentation or comments within the workflow canvas.
Prerequisites/Requirements
- n8n Instance: You need a running n8n instance (self-hosted or cloud).
Setup/Usage
- Import the Workflow:
- Copy the provided JSON code.
- In your n8n instance, go to "Workflows" and click "New".
- Click the three dots in the top right corner and select "Import from JSON".
- Paste the JSON code and click "Import".
- Configure the "Edit Fields (Set)" node:
- Open the "Edit Fields (Set)" node.
- Currently, it's set to pass data through. You can add or modify fields here as needed for your specific use case. For example, you might add a new field like
{"status": "processed"}.
- Configure the "If" node:
- Open the "If" node.
- Define the condition(s) that will determine whether the workflow proceeds down the "True" or "False" branch. For example, you might check if a field from the previous "Set" node equals a certain value.
- Execute the Workflow:
- Click the "Execute Workflow" button (the play icon) on the "Manual Trigger" node to run the workflow manually and observe its behavior based on your "If" node configuration.
- You can also activate the workflow to run it automatically based on a defined trigger (though this workflow is currently set for manual execution).
Related Templates
Track competitor SEO keywords with Decodo + GPT-4.1-mini + Google Sheets
This workflow automates competitor keyword research using OpenAI LLM and Decodo for intelligent web scraping. Who this is for SEO specialists, content strategists, and growth marketers who want to automate keyword research and competitive intelligence. Marketing analysts managing multiple clients or websites who need consistent SEO tracking without manual data pulls. Agencies or automation engineers using Google Sheets as an SEO data dashboard for keyword monitoring and reporting. What problem this workflow solves Tracking competitor keywords manually is slow and inconsistent. Most SEO tools provide limited API access or lack contextual keyword analysis. This workflow solves that by: Automatically scraping any competitorโs webpage with Decodo. Using OpenAI GPT-4.1-mini to interpret keyword intent, density, and semantic focus. Storing structured keyword insights directly in Google Sheets for ongoing tracking and trend analysis. What this workflow does Trigger โ Manually start the workflow or schedule it to run periodically. Input Setup โ Define the website URL and target country (e.g., https://dev.to, france). Data Scraping (Decodo) โ Fetch competitor web content and metadata. Keyword Analysis (OpenAI GPT-4.1-mini) Extract primary and secondary keywords. Identify focus topics and semantic entities. Generate a keyword density summary and SEO strength score. Recommend optimization and internal linking opportunities. Data Structuring โ Clean and convert GPT output into JSON format. Data Storage (Google Sheets) โ Append structured keyword data to a Google Sheet for long-term tracking. Setup Prerequisites If you are new to Decode, please signup on this link visit.decodo.com n8n account with workflow editor access Decodo API credentials OpenAI API key Google Sheets account connected via OAuth2 Make sure to install the Decodo Community node. Create a Google Sheet Add columns for: primarykeywords, seostrengthscore, keyworddensity_summary, etc. Share with your n8n Google account. Connect Credentials Add credentials for: Decodo API credentials - You need to register, login and obtain the Basic Authentication Token via Decodo Dashboard OpenAI API (for GPT-4o-mini) Google Sheets OAuth2 Configure Input Fields Edit the โSet Input Fieldsโ node to set your target site and region. Run the Workflow Click Execute Workflow in n8n. View structured results in your connected Google Sheet. How to customize this workflow Track Multiple Competitors โ Use a Google Sheet or CSV list of URLs; loop through them using the Split In Batches node. Add Language Detection โ Add a Gemini or GPT node before keyword analysis to detect content language and adjust prompts. Enhance the SEO Report โ Expand the GPT prompt to include backlink insights, metadata optimization, or readability checks. Integrate Visualization โ Connect your Google Sheet to Looker Studio for SEO performance dashboards. Schedule Auto-Runs โ Use the Cron Node to run weekly or monthly for competitor keyword refreshes. Summary This workflow automates competitor keyword research using: Decodo for intelligent web scraping OpenAI GPT-4.1-mini for keyword and SEO analysis Google Sheets for live tracking and reporting Itโs a complete AI-powered SEO intelligence pipeline ideal for teams that want actionable insights on keyword gaps, optimization opportunities, and content focus trends, without relying on expensive SEO SaaS tools.
Generate song lyrics and music from text prompts using OpenAI and Fal.ai Minimax
Spark your creativity instantly in any chatโturn a simple prompt like "heartbreak ballad" into original, full-length lyrics and a professional AI-generated music track, all without leaving your conversation. ๐ What This Template Does This chat-triggered workflow harnesses AI to generate detailed, genre-matched song lyrics (at least 600 characters) from user messages, then queues them for music synthesis via Fal.ai's minimax-music model. It polls asynchronously until the track is ready, delivering lyrics and audio URL back in chat. Crafts original, structured lyrics with verses, choruses, and bridges using OpenAI Submits to Fal.ai for melody, instrumentation, and vocals aligned to the style Handles long-running generations with smart looping and status checks Returns complete song package (lyrics + audio link) for seamless sharing ๐ง Prerequisites n8n account (self-hosted or cloud with chat integration enabled) OpenAI account with API access for GPT models Fal.ai account for AI music generation ๐ Required Credentials OpenAI API Setup Go to platform.openai.com โ API keys (sidebar) Click "Create new secret key" โ Name it (e.g., "n8n Songwriter") Copy the key and add to n8n as "OpenAI API" credential type Test by sending a simple chat completion request Fal.ai HTTP Header Auth Setup Sign up at fal.ai โ Dashboard โ API Keys Generate a new API key โ Copy it In n8n, create "HTTP Header Auth" credential: Name="Fal.ai", Header Name="Authorization", Header Value="Key [Your API Key]" Test with a simple GET to their queue endpoint (e.g., /status) โ๏ธ Configuration Steps Import the workflow JSON into your n8n instance Assign OpenAI API credentials to the "OpenAI Chat Model" node Assign Fal.ai HTTP Header Auth to the "Generate Music Track", "Check Generation Status", and "Fetch Final Result" nodes Activate the workflowโchat trigger will appear in your n8n chat interface Test by messaging: "Create an upbeat pop song about road trips" ๐ฏ Use Cases Content Creators: YouTubers generating custom jingles for videos on the fly, streamlining production from idea to audio export Educators: Music teachers using chat prompts to create era-specific folk tunes for classroom discussions, fostering interactive learning Gift Personalization: Friends crafting anniversary R&B tracks from shared memories via quick chats, delivering emotional audio surprises Artist Brainstorming: Songwriters prototyping hip-hop beats in real-time during sessions, accelerating collaboration and iteration โ ๏ธ Troubleshooting Invalid JSON from AI Agent: Ensure the system prompt stresses valid JSON; test the agent standalone with a sample query Music Generation Fails (401/403): Verify Fal.ai API key has minimax-music access; check usage quotas in dashboard Status Polling Loops Indefinitely: Bump wait time to 45-60s for complex tracks; inspect fal.ai queue logs for bottlenecks Lyrics Under 600 Characters: Tweak agent prompt to enforce fuller structures like [V1][C][V2][B][C]; verify output length in executions
Automate invoice processing with OCR, GPT-4 & Salesforce opportunity creation
PDF Invoice Extractor (AI) End-to-end pipeline: Watch Drive โ Download PDF โ OCR text โ AI normalize to JSON โ Upsert Buyer (Account) โ Create Opportunity โ Map Products โ Create OLI via Composite API โ Archive to OneDrive. --- Node by node (what it does & key setup) 1) Google Drive Trigger Purpose: Fire when a new file appears in a specific Google Drive folder. Key settings: Event: fileCreated Folder ID: google drive folder id Polling: everyMinute Creds: googleDriveOAuth2Api Output: Metadata { id, name, ... } for the new file. --- 2) Download File From Google Purpose: Get the file binary for processing and archiving. Key settings: Operation: download File ID: ={{ $json.id }} Creds: googleDriveOAuth2Api Output: Binary (default key: data) and original metadata. --- 3) Extract from File Purpose: Extract text from PDF (OCR as needed) for AI parsing. Key settings: Operation: pdf OCR: enable for scanned PDFs (in options) Output: JSON with OCR text at {{ $json.text }}. --- 4) Message a model (AI JSON Extractor) Purpose: Convert OCR text into strict normalized JSON array (invoice schema). Key settings: Node: @n8n/n8n-nodes-langchain.openAi Model: gpt-4.1 (or gpt-4.1-mini) Message role: system (the strict prompt; references {{ $json.text }}) jsonOutput: true Creds: openAiApi Output (per item): $.message.content โ the parsed JSON (ensure itโs an array). --- 5) Create or update an account (Salesforce) Purpose: Upsert Buyer as Account using an external ID. Key settings: Resource: account Operation: upsert External Id Field: taxid_c External Id Value: ={{ $json.message.content.buyer.tax_id }} Name: ={{ $json.message.content.buyer.name }} Creds: salesforceOAuth2Api Output: Account record (captures Id) for downstream Opportunity. --- 6) Create an opportunity (Salesforce) Purpose: Create Opportunity linked to the Buyer (Account). Key settings: Resource: opportunity Name: ={{ $('Message a model').item.json.message.content.invoice.code }} Close Date: ={{ $('Message a model').item.json.message.content.invoice.issue_date }} Stage: Closed Won Amount: ={{ $('Message a model').item.json.message.content.summary.grand_total }} AccountId: ={{ $json.id }} (from Upsert Account output) Creds: salesforceOAuth2Api Output: Opportunity Id for OLI creation. --- 7) Build SOQL (Code / JS) Purpose: Collect unique product codes from AI JSON and build a SOQL query for PricebookEntry by Pricebook2Id. Key settings: pricebook2Id (hardcoded in script): e.g., 01sxxxxxxxxxxxxxxx Source lines: $('Message a model').first().json.message.content.products Output: { soql, codes } --- 8) Query PricebookEntries (Salesforce) Purpose: Fetch PricebookEntry.Id for each Product2.ProductCode. Key settings: Resource: search Query: ={{ $json.soql }} Creds: salesforceOAuth2Api Output: Items with Id, Product2.ProductCode (used for mapping). --- 9) Code in JavaScript (Build OLI payloads) Purpose: Join lines with PBE results and Opportunity Id โ build OpportunityLineItem payloads. Inputs: OpportunityId: ={{ $('Create an opportunity').first().json.id }} Lines: ={{ $('Message a model').first().json.message.content.products }} PBE rows: from previous node items Output: { body: { allOrNone:false, records:[{ OpportunityLineItem... }] } } Notes: Converts discount_total โ per-unit if needed (currently commented for standard pricing). Throws on missing PBE mapping or empty lines. --- 10) Create Opportunity Line Items (HTTP Request) Purpose: Bulk create OLIs via Salesforce Composite API. Key settings: Method: POST URL: https://<your-instance>.my.salesforce.com/services/data/v65.0/composite/sobjects Auth: salesforceOAuth2Api (predefined credential) Body (JSON): ={{ $json.body }} Output: Composite API results (per-record statuses). --- 11) Update File to One Drive Purpose: Archive the original PDF in OneDrive. Key settings: Operation: upload File Name: ={{ $json.name }} Parent Folder ID: onedrive folder id Binary Data: true (from the Download node) Creds: microsoftOneDriveOAuth2Api Output: Uploaded file metadata. --- Data flow (wiring) Google Drive Trigger โ Download File From Google Download File From Google โ Extract from File โ Update File to One Drive Extract from File โ Message a model Message a model โ Create or update an account Create or update an account โ Create an opportunity Create an opportunity โ Build SOQL Build SOQL โ Query PricebookEntries Query PricebookEntries โ Code in JavaScript Code in JavaScript โ Create Opportunity Line Items --- Quick setup checklist ๐ Credentials: Connect Google Drive, OneDrive, Salesforce, OpenAI. ๐ IDs: Drive Folder ID (watch) OneDrive Parent Folder ID (archive) Salesforce Pricebook2Id (in the JS SOQL builder) ๐ง AI Prompt: Use the strict system prompt; jsonOutput = true. ๐งพ Field mappings: Buyer tax id/name โ Account upsert fields Invoice code/date/amount โ Opportunity fields Product name must equal your Product2.ProductCode in SF. โ Test: Drop a sample PDF โ verify: AI returns array JSON only Account/Opportunity created OLI records created PDF archived to OneDrive --- Notes & best practices If PDFs are scans, enable OCR in Extract from File. If AI returns non-JSON, keep โReturn only a JSON arrayโ as the last line of the prompt and keep jsonOutput enabled. Consider adding validation on parsing.warnings to gate Salesforce writes. For discounts/taxes in OLI: Standard OLI fields donโt support per-line discount amounts directly; model them in UnitPrice or custom fields. Replace the Composite API URL with your orgโs domain or use the Salesforce nodeโs Bulk Upsert for simplicity.