Back to Catalog

Auto-enrich new CRM companies with ChatGPT web research via Tavily

CentralStationCRMCentralStationCRM
771 views
2/3/2026
Official Page

Overview

This template benefits anyone who wants to:

  • automate web research on a prospect company
  • compile that research into an easily readable note and save the note into CentralStationCRM

Tools in this workflow

Disclaimer

Tavily Web Search is (as of yet) a community node. You have to activate the use of community nodes inside your n8n account to use this workflow.

Workflow Screenshot

AutoEnrich New CRM Companies with ChatGPT Web Research via Tavily  n8n.jpg

Workflow Description

The workflow consists of:

  • a webhook trigger
  • an ai agent node
  • an http request node

The Webhook Trigger

The Webhook is set up in CentralStationCRM to trigger when a new company is created inside the CRM.

The Webhook Trigger Node in n8n then fetches the company data from the CRM.

The AI Agent Node

The node uses ChatGPT as ai chat model and two Tavily Web Search operations ('search for information' and 'extract URLs') as tools. Additionally, it uses a simple prompt as tool, telling the ai model to re-iterate on the research data if applicable.

The AI Agent Node takes the Company Name and prompts ChatGPT to "do a deep research" on this company on the web. "The research shall help sales people get a good overview about the company and allow to identify potential opportunities."

The AI Agent then formats the results into markdown format and passes them to the next node.

The CentralStationCRM protocol node

This is an HTTP Request to the CentralStationCRM API. It creates a 'protocol' (the API's name for notes in the CRM) with the markdown data it received from the previous node.

This protocol is saved in CentralStationCRM, where it can easily be accessed as a note when clicking on the new company entry.

Customization ideas

Even though this workflow is pretty simple, it poses interesting possibilities for customization.

For example, you can alter the Webhook trigger (in CentralstationCRM and n8n) to fire when a person is created. You have to alter the AI prompt as well and make sure the third node adds the research note to the person, not a company, via the CentralStationCRM API.

You could also swap the AI model used here for another one, comparing the resulting research data and get a deeper understanding of ai chat models.

Then of course there is the prompt itself. You can definitely double down on the information you are most interested in and refine your prompt to make the ai bot focus on these areas of search. Start experimenting a bit!

Preconditions

For this workflow to work, you need

  • a CentralStationCRM account with API Access
  • an n8n account with API Access
  • an Open AI account with API Access

Have fun with our workflow!

Auto-Enrich New CRM Companies with ChatGPT Web Research via Tavily

This n8n workflow automates the process of enriching new company records in your CRM by performing web research using an AI agent powered by OpenAI and the Tavily Search API. It's designed to provide valuable, up-to-date information about companies, helping your sales and marketing teams better understand their prospects.

What it does

This workflow simplifies and automates the following steps:

  1. Triggers on new company data: It listens for incoming HTTP requests, which are expected to contain information about a new company (e.g., company name).
  2. Initial AI Thought: An AI "Think" tool is used to formulate an initial thought or plan for the web research, based on the incoming company data.
  3. AI-Powered Web Research: An AI Agent, configured with an OpenAI Chat Model, performs web research. It will likely use tools like Tavily Search (though not explicitly defined in the provided JSON, this is a common pattern for such a workflow given the directory name) to gather information about the company.
  4. Generates Company Insights: The AI agent processes the research results to generate structured insights or a summary about the company.
  5. Returns Enriched Data: The workflow then returns the enriched company data, likely including the AI-generated insights, via an HTTP response.

Prerequisites/Requirements

To use this workflow, you will need:

  • n8n Instance: A running n8n instance.
  • OpenAI API Key: For the "OpenAI Chat Model" node to function.
  • Tavily Search API Key: (Assumed, based on the directory name "chatgpt-web-research-via-tavily" and the nature of web research with AI agents). This would be configured within the AI Agent's tools, though not explicitly visible in the provided JSON.
  • A System to Trigger the Webhook: Your CRM or another system that can send an HTTP POST request to the n8n webhook URL when a new company is created.

Setup/Usage

  1. Import the workflow: Download the provided JSON and import it into your n8n instance.
  2. Configure Credentials:
    • OpenAI Chat Model: Configure your OpenAI API Key credential in the "OpenAI Chat Model" node.
    • (Assumed) Tavily Search: If the AI Agent is configured to use Tavily, ensure your Tavily API Key is set up as a credential and linked to the AI Agent's tools.
  3. Activate the Webhook: Once the workflow is active, n8n will provide a unique webhook URL for the "Webhook" trigger node.
  4. Integrate with your CRM: Configure your CRM (or other source system) to send an HTTP POST request to this webhook URL whenever a new company record is created. The request body should contain the company name and any other relevant initial data.
  5. Test the workflow: Run a test by creating a new company in your CRM or manually sending a POST request to the webhook URL. Observe the execution in n8n to ensure it runs correctly and returns the expected enriched data.
  6. Consume the enriched data: The output of the "HTTP Request" node (which is the final response of the webhook) will contain the AI-enriched company information. Your CRM or a subsequent n8n node can then process this data to update the company record.

Related Templates

Track competitor SEO keywords with Decodo + GPT-4.1-mini + Google Sheets

This workflow automates competitor keyword research using OpenAI LLM and Decodo for intelligent web scraping. Who this is for SEO specialists, content strategists, and growth marketers who want to automate keyword research and competitive intelligence. Marketing analysts managing multiple clients or websites who need consistent SEO tracking without manual data pulls. Agencies or automation engineers using Google Sheets as an SEO data dashboard for keyword monitoring and reporting. What problem this workflow solves Tracking competitor keywords manually is slow and inconsistent. Most SEO tools provide limited API access or lack contextual keyword analysis. This workflow solves that by: Automatically scraping any competitor’s webpage with Decodo. Using OpenAI GPT-4.1-mini to interpret keyword intent, density, and semantic focus. Storing structured keyword insights directly in Google Sheets for ongoing tracking and trend analysis. What this workflow does Trigger — Manually start the workflow or schedule it to run periodically. Input Setup — Define the website URL and target country (e.g., https://dev.to, france). Data Scraping (Decodo) — Fetch competitor web content and metadata. Keyword Analysis (OpenAI GPT-4.1-mini) Extract primary and secondary keywords. Identify focus topics and semantic entities. Generate a keyword density summary and SEO strength score. Recommend optimization and internal linking opportunities. Data Structuring — Clean and convert GPT output into JSON format. Data Storage (Google Sheets) — Append structured keyword data to a Google Sheet for long-term tracking. Setup Prerequisites If you are new to Decode, please signup on this link visit.decodo.com n8n account with workflow editor access Decodo API credentials OpenAI API key Google Sheets account connected via OAuth2 Make sure to install the Decodo Community node. Create a Google Sheet Add columns for: primarykeywords, seostrengthscore, keyworddensity_summary, etc. Share with your n8n Google account. Connect Credentials Add credentials for: Decodo API credentials - You need to register, login and obtain the Basic Authentication Token via Decodo Dashboard OpenAI API (for GPT-4o-mini) Google Sheets OAuth2 Configure Input Fields Edit the “Set Input Fields” node to set your target site and region. Run the Workflow Click Execute Workflow in n8n. View structured results in your connected Google Sheet. How to customize this workflow Track Multiple Competitors → Use a Google Sheet or CSV list of URLs; loop through them using the Split In Batches node. Add Language Detection → Add a Gemini or GPT node before keyword analysis to detect content language and adjust prompts. Enhance the SEO Report → Expand the GPT prompt to include backlink insights, metadata optimization, or readability checks. Integrate Visualization → Connect your Google Sheet to Looker Studio for SEO performance dashboards. Schedule Auto-Runs → Use the Cron Node to run weekly or monthly for competitor keyword refreshes. Summary This workflow automates competitor keyword research using: Decodo for intelligent web scraping OpenAI GPT-4.1-mini for keyword and SEO analysis Google Sheets for live tracking and reporting It’s a complete AI-powered SEO intelligence pipeline ideal for teams that want actionable insights on keyword gaps, optimization opportunities, and content focus trends, without relying on expensive SEO SaaS tools.

Ranjan DailataBy Ranjan Dailata
161

Generate song lyrics and music from text prompts using OpenAI and Fal.ai Minimax

Spark your creativity instantly in any chat—turn a simple prompt like "heartbreak ballad" into original, full-length lyrics and a professional AI-generated music track, all without leaving your conversation. 📋 What This Template Does This chat-triggered workflow harnesses AI to generate detailed, genre-matched song lyrics (at least 600 characters) from user messages, then queues them for music synthesis via Fal.ai's minimax-music model. It polls asynchronously until the track is ready, delivering lyrics and audio URL back in chat. Crafts original, structured lyrics with verses, choruses, and bridges using OpenAI Submits to Fal.ai for melody, instrumentation, and vocals aligned to the style Handles long-running generations with smart looping and status checks Returns complete song package (lyrics + audio link) for seamless sharing 🔧 Prerequisites n8n account (self-hosted or cloud with chat integration enabled) OpenAI account with API access for GPT models Fal.ai account for AI music generation 🔑 Required Credentials OpenAI API Setup Go to platform.openai.com → API keys (sidebar) Click "Create new secret key" → Name it (e.g., "n8n Songwriter") Copy the key and add to n8n as "OpenAI API" credential type Test by sending a simple chat completion request Fal.ai HTTP Header Auth Setup Sign up at fal.ai → Dashboard → API Keys Generate a new API key → Copy it In n8n, create "HTTP Header Auth" credential: Name="Fal.ai", Header Name="Authorization", Header Value="Key [Your API Key]" Test with a simple GET to their queue endpoint (e.g., /status) ⚙️ Configuration Steps Import the workflow JSON into your n8n instance Assign OpenAI API credentials to the "OpenAI Chat Model" node Assign Fal.ai HTTP Header Auth to the "Generate Music Track", "Check Generation Status", and "Fetch Final Result" nodes Activate the workflow—chat trigger will appear in your n8n chat interface Test by messaging: "Create an upbeat pop song about road trips" 🎯 Use Cases Content Creators: YouTubers generating custom jingles for videos on the fly, streamlining production from idea to audio export Educators: Music teachers using chat prompts to create era-specific folk tunes for classroom discussions, fostering interactive learning Gift Personalization: Friends crafting anniversary R&B tracks from shared memories via quick chats, delivering emotional audio surprises Artist Brainstorming: Songwriters prototyping hip-hop beats in real-time during sessions, accelerating collaboration and iteration ⚠️ Troubleshooting Invalid JSON from AI Agent: Ensure the system prompt stresses valid JSON; test the agent standalone with a sample query Music Generation Fails (401/403): Verify Fal.ai API key has minimax-music access; check usage quotas in dashboard Status Polling Loops Indefinitely: Bump wait time to 45-60s for complex tracks; inspect fal.ai queue logs for bottlenecks Lyrics Under 600 Characters: Tweak agent prompt to enforce fuller structures like [V1][C][V2][B][C]; verify output length in executions

Daniel NkenchoBy Daniel Nkencho
601

Automate invoice processing with OCR, GPT-4 & Salesforce opportunity creation

PDF Invoice Extractor (AI) End-to-end pipeline: Watch Drive ➜ Download PDF ➜ OCR text ➜ AI normalize to JSON ➜ Upsert Buyer (Account) ➜ Create Opportunity ➜ Map Products ➜ Create OLI via Composite API ➜ Archive to OneDrive. --- Node by node (what it does & key setup) 1) Google Drive Trigger Purpose: Fire when a new file appears in a specific Google Drive folder. Key settings: Event: fileCreated Folder ID: google drive folder id Polling: everyMinute Creds: googleDriveOAuth2Api Output: Metadata { id, name, ... } for the new file. --- 2) Download File From Google Purpose: Get the file binary for processing and archiving. Key settings: Operation: download File ID: ={{ $json.id }} Creds: googleDriveOAuth2Api Output: Binary (default key: data) and original metadata. --- 3) Extract from File Purpose: Extract text from PDF (OCR as needed) for AI parsing. Key settings: Operation: pdf OCR: enable for scanned PDFs (in options) Output: JSON with OCR text at {{ $json.text }}. --- 4) Message a model (AI JSON Extractor) Purpose: Convert OCR text into strict normalized JSON array (invoice schema). Key settings: Node: @n8n/n8n-nodes-langchain.openAi Model: gpt-4.1 (or gpt-4.1-mini) Message role: system (the strict prompt; references {{ $json.text }}) jsonOutput: true Creds: openAiApi Output (per item): $.message.content → the parsed JSON (ensure it’s an array). --- 5) Create or update an account (Salesforce) Purpose: Upsert Buyer as Account using an external ID. Key settings: Resource: account Operation: upsert External Id Field: taxid_c External Id Value: ={{ $json.message.content.buyer.tax_id }} Name: ={{ $json.message.content.buyer.name }} Creds: salesforceOAuth2Api Output: Account record (captures Id) for downstream Opportunity. --- 6) Create an opportunity (Salesforce) Purpose: Create Opportunity linked to the Buyer (Account). Key settings: Resource: opportunity Name: ={{ $('Message a model').item.json.message.content.invoice.code }} Close Date: ={{ $('Message a model').item.json.message.content.invoice.issue_date }} Stage: Closed Won Amount: ={{ $('Message a model').item.json.message.content.summary.grand_total }} AccountId: ={{ $json.id }} (from Upsert Account output) Creds: salesforceOAuth2Api Output: Opportunity Id for OLI creation. --- 7) Build SOQL (Code / JS) Purpose: Collect unique product codes from AI JSON and build a SOQL query for PricebookEntry by Pricebook2Id. Key settings: pricebook2Id (hardcoded in script): e.g., 01sxxxxxxxxxxxxxxx Source lines: $('Message a model').first().json.message.content.products Output: { soql, codes } --- 8) Query PricebookEntries (Salesforce) Purpose: Fetch PricebookEntry.Id for each Product2.ProductCode. Key settings: Resource: search Query: ={{ $json.soql }} Creds: salesforceOAuth2Api Output: Items with Id, Product2.ProductCode (used for mapping). --- 9) Code in JavaScript (Build OLI payloads) Purpose: Join lines with PBE results and Opportunity Id ➜ build OpportunityLineItem payloads. Inputs: OpportunityId: ={{ $('Create an opportunity').first().json.id }} Lines: ={{ $('Message a model').first().json.message.content.products }} PBE rows: from previous node items Output: { body: { allOrNone:false, records:[{ OpportunityLineItem... }] } } Notes: Converts discount_total ➜ per-unit if needed (currently commented for standard pricing). Throws on missing PBE mapping or empty lines. --- 10) Create Opportunity Line Items (HTTP Request) Purpose: Bulk create OLIs via Salesforce Composite API. Key settings: Method: POST URL: https://<your-instance>.my.salesforce.com/services/data/v65.0/composite/sobjects Auth: salesforceOAuth2Api (predefined credential) Body (JSON): ={{ $json.body }} Output: Composite API results (per-record statuses). --- 11) Update File to One Drive Purpose: Archive the original PDF in OneDrive. Key settings: Operation: upload File Name: ={{ $json.name }} Parent Folder ID: onedrive folder id Binary Data: true (from the Download node) Creds: microsoftOneDriveOAuth2Api Output: Uploaded file metadata. --- Data flow (wiring) Google Drive Trigger → Download File From Google Download File From Google → Extract from File → Update File to One Drive Extract from File → Message a model Message a model → Create or update an account Create or update an account → Create an opportunity Create an opportunity → Build SOQL Build SOQL → Query PricebookEntries Query PricebookEntries → Code in JavaScript Code in JavaScript → Create Opportunity Line Items --- Quick setup checklist 🔐 Credentials: Connect Google Drive, OneDrive, Salesforce, OpenAI. 📂 IDs: Drive Folder ID (watch) OneDrive Parent Folder ID (archive) Salesforce Pricebook2Id (in the JS SOQL builder) 🧠 AI Prompt: Use the strict system prompt; jsonOutput = true. 🧾 Field mappings: Buyer tax id/name → Account upsert fields Invoice code/date/amount → Opportunity fields Product name must equal your Product2.ProductCode in SF. ✅ Test: Drop a sample PDF → verify: AI returns array JSON only Account/Opportunity created OLI records created PDF archived to OneDrive --- Notes & best practices If PDFs are scans, enable OCR in Extract from File. If AI returns non-JSON, keep “Return only a JSON array” as the last line of the prompt and keep jsonOutput enabled. Consider adding validation on parsing.warnings to gate Salesforce writes. For discounts/taxes in OLI: Standard OLI fields don’t support per-line discount amounts directly; model them in UnitPrice or custom fields. Replace the Composite API URL with your org’s domain or use the Salesforce node’s Bulk Upsert for simplicity.

Le NguyenBy Le Nguyen
942