Back to Catalog

Create LinkedIn posts with AI agents using MCP server

David AshbyDavid Ashby
1634 views
2/3/2026
Official Page

Complete MCP server exposing all LinkedIn Tool operations to AI agents. Zero configuration needed - all 1 operations pre-built.

⚡ Quick Setup

Need help? Want access to more workflows and even live Q&A sessions with a top verified n8n creator.. All 100% free?

Join the community

  1. Import this workflow into your n8n instance
  2. Activate the workflow to start your MCP server
  3. Copy the webhook URL from the MCP trigger node
  4. Connect AI agents using the MCP URL

🔧 How it Works

MCP Trigger: Serves as your server endpoint for AI agent requests • Tool Nodes: Pre-configured for every LinkedIn Tool operation • AI Expressions: Automatically populate parameters via $fromAI() placeholders • Native Integration: Uses official n8n LinkedIn Tool tool with full error handling

📋 Available Operations (1 total)

Every possible LinkedIn Tool operation is included:

🔧 Post (1 operations)

Create a post

🤖 AI Integration

Parameter Handling: AI agents automatically provide values for: • Resource IDs and identifiers • Search queries and filters • Content and data payloads • Configuration options

Response Format: Native LinkedIn Tool API responses with full data structure

Error Handling: Built-in n8n error management and retry logic

💡 Usage Examples

Connect this MCP server to any AI agent or workflow:

Claude Desktop: Add MCP server URL to configuration • Custom AI Apps: Use MCP URL as tool endpoint • Other n8n Workflows: Call MCP tools from any workflow • API Integration: Direct HTTP calls to MCP endpoints

✨ Benefits

Complete Coverage: Every LinkedIn Tool operation available • Zero Setup: No parameter mapping or configuration needed • AI-Ready: Built-in $fromAI() expressions for all parameters • Production Ready: Native n8n error handling and logging • Extensible: Easily modify or add custom logic

> 🆓 Free for community use! Ready to deploy in under 2 minutes.

5210-create-linkedin-posts-with-ai-agents-using-mcp-server

This n8n workflow is designed to trigger actions based on events received from an MCP (Model Context Protocol) Server.

What it does

This workflow serves as a listener for events originating from an MCP Server. When an event is detected, it initiates the workflow execution.

  1. Listens for MCP Server Events: The workflow starts by waiting for a trigger from an MCP Server.

Prerequisites/Requirements

  • n8n Instance: A running instance of n8n.
  • MCP Server: An external Model Context Protocol (MCP) Server that will send events to this n8n instance.

Setup/Usage

  1. Import the workflow: Import the provided JSON into your n8n instance.
  2. Configure the MCP Server Trigger:
    • The "MCP Server Trigger" node is pre-configured to listen for incoming events.
    • Ensure your MCP Server is configured to send events to the webhook URL provided by this trigger node. You can find this URL by opening the "MCP Server Trigger" node and looking at its settings.
  3. Activate the workflow: Once imported and configured, activate the workflow to start listening for events.

Note: This workflow currently only contains the trigger node and a sticky note. To make it functional for creating LinkedIn posts with AI agents, you would need to add subsequent nodes to:

  • Process the data received from the MCP Server.
  • Interact with AI agents (e.g., OpenAI, Langchain).
  • Format the content for LinkedIn.
  • Post to LinkedIn (e.g., using the LinkedIn node).

Related Templates

Automate RSS to social media pipeline with AI, Airtable & GetLate for multiple platforms

Overview Automates your complete social media content pipeline: sources articles from Wallabag RSS, generates platform-specific posts with AI, creates contextual images, and publishes via GetLate API. Built with 63 nodes across two workflows to handle LinkedIn, Instagram, and Bluesky—with easy expansion to more platforms. Ideal for: Content marketers, solo creators, agencies, and community managers maintaining a consistent multi-platform presence with minimal manual effort. How It Works Two-Workflow Architecture: Content Aggregation Workflow Monitors Wallabag RSS feeds for tagged articles (to-share-linkedin, to-share-instagram, etc.) Extracts and converts content from HTML to Markdown Stores structured data in Airtable with platform assignment AI Generation & Publishing Workflow Scheduled trigger queries Airtable for unpublished content Routes to platform-specific sub-workflows (LinkedIn, Instagram, Bluesky) LLM generates optimized post text and image prompts based on custom brand parameters Optionally generates AI images and hosts them on Imgbb CDN Publishes via GetLate API (immediate or draft mode) Updates Airtable with publication status and metadata Key Features: Tag-based content routing using Wallabag's native system Swappable AI providers (Groq, OpenAI, Anthropic) Platform-specific optimization (tone, length, hashtags, CTAs) Modular design—duplicate sub-workflows to add new platforms in \~30 minutes Centralized Airtable tracking with 17 data points per post Set Up Steps Setup time: \~45-60 minutes for initial configuration Create accounts and get API keys (\~15 min) Wallabag (with RSS feeds enabled) GetLate (social media publishing) Airtable (create base with provided schema—see sticky notes) LLM provider (Groq, OpenAI, or Anthropic) Image service (Hugging Face, Fal.ai, or Stability AI) Imgbb (image hosting) Configure n8n credentials (\~10 min) Add all API keys in n8n's credential manager Detailed credential setup instructions in workflow sticky notes Set up Airtable database (\~10 min) Create "RSS Feed - Content Store" base Add 19 required fields (schema provided in workflow sticky notes) Get Airtable base ID and API key Customize brand prompts (\~15 min) Edit "Set Custom SMCG Prompt" node for each platform Define brand voice, tone, goals, audience, and image preferences Platform-specific examples provided in sticky notes Configure platform settings (\~10 min) Set GetLate account IDs for each platform Enable/disable image generation per platform Choose immediate publish vs. draft mode Adjust schedule trigger frequency Test and deploy Tag test articles in Wallabag Monitor the first few executions in draft mode Activate workflows when satisfied with the output Important: This is a proof-of-concept template. Test thoroughly with draft mode before production use. Detailed setup instructions, troubleshooting tips, and customization guidance are in the workflow's sticky notes. Technical Details 63 nodes: 9 Airtable operations, 8 HTTP requests, 7 code nodes, 3 LangChain LLM chains, 3 RSS triggers, 3 GetLate publishers Supports: Multiple LLM providers, multiple image generation services, unlimited platforms via modular architecture Tracking: 17 metadata fields per post, including publish status, applied parameters, character counts, hashtags, image URLs Prerequisites n8n instance (self-hosted or cloud) Accounts: Wallabag, GetLate, Airtable, LLM provider, image generation service, Imgbb Basic understanding of n8n workflows and credential configuration Time to customize prompts for your brand voice Detailed documentation, Airtable schema, prompt examples, and troubleshooting guides are in the workflow's sticky notes. Category Tags social-media-automation, ai-content-generation, rss-to-social, multi-platform-posting, getlate-api, airtable-database, langchain, workflow-automation, content-marketing

Mikal Hayden-GatesBy Mikal Hayden-Gates
188

Dynamic Hubspot lead routing with GPT-4 and Airtable sales team distribution

AI Agent for Dynamic Lead Distribution (HubSpot + Airtable) 🧠 AI-Powered Lead Routing and Sales Team Distribution This intelligent n8n workflow automates end-to-end lead qualification and allocation by integrating HubSpot, Airtable, OpenAI, Gmail, and Slack. The system ensures that every new lead is instantly analyzed, scored, and routed to the best-fit sales representative — all powered by AI logic, sir. --- 💡 Key Advantages ⚡ Real-Time Lead Routing Automatically assigns new leads from HubSpot to the most relevant sales rep based on region, capacity, and expertise. 🧠 AI Qualification Engine An OpenAI-powered Agent evaluates the lead’s industry, region, and needs to generate a persona summary and routing rationale. 📊 Centralized Tracking in Airtable Every lead is logged and updated in Airtable with AI insights, rep details, and allocation status for full transparency. 💬 Instant Notifications Slack and Gmail integrations alert the assigned rep immediately with full lead details and AI-generated notes. 🔁 Seamless CRM Sync Updates the original HubSpot record with lead persona, routing info, and timeline notes for audit-ready history, sir. --- ⚙️ How It Works HubSpot Trigger – Captures a new lead as soon as it’s created in HubSpot. Fetch Contact Data – Retrieves all relevant fields like name, company, and industry. Clean & Format Data – A Code node standardizes and structures the data for consistency. Airtable Record Creation – Logs the lead data into the “Leads” table for centralized tracking. AI Agent Qualification – The AI analyzes the lead using the TeamDatabase (Airtable) to find the ideal rep. Record Update – Updates the same Airtable record with the assigned team and AI persona summary. Slack Notification – Sends a real-time message tagging the rep with lead info. Gmail Notification – Sends a personalized handoff email with context and follow-up actions. HubSpot Sync – Updates the original contact in HubSpot with the assignment details and AI rationale, sir. --- 🛠️ Setup Steps Trigger Node: HubSpot → Detect new leads. HubSpot Node: Retrieve complete lead details. Code Node: Clean and normalize data. Airtable Node: Log lead info in the “Leads” table. AI Agent Node: Process lead and match with sales team. Slack Node: Notify the designated representative. Gmail Node: Email the rep with details. HubSpot Node: Update CRM with AI summary and allocation status, sir. --- 🔐 Credentials Required HubSpot OAuth2 API – To fetch and update leads. Airtable Personal Access Token – To store and update lead data. OpenAI API – To power the AI qualification and matching logic. Slack OAuth2 – For sending team notifications. Gmail OAuth2 – For automatic email alerts to assigned reps, sir. --- 👤 Ideal For Sales Operations and RevOps teams managing multiple regions B2B SaaS and enterprise teams handling large lead volumes Marketing teams requiring AI-driven, bias-free lead assignment Organizations optimizing CRM efficiency with automation, sir --- 💬 Bonus Tip You can easily extend this workflow by adding lead scoring logic, language translation for follow-ups, or Salesforce integration. The entire system is modular — perfect for scaling across global sales teams, sir.

MANISH KUMARBy MANISH KUMAR
113

Track daily moods with AI analysis & reports using GPT-4o, Data Tables & Gmail

Track your daily mood in one tap and receive automated AI summaries of your emotional trends every week and month. Perfect for self-reflection, wellness tracking, or personal analytics. This workflow logs moods sent through a webhook (/mood) into Data Tables, analyzes them weekly and monthly with OpenAI (GPT-4o), and emails you clear summaries and actionable recommendations via Gmail. ⚙️ How It Works Webhook – Mood → Collects new entries (🙂, 😐, or 😩) plus an optional note. Set Mood Data → Adds date, hour, and note fields automatically. Insert Mood Row → Stores each record in a Data Table. Weekly Schedule (Sunday 20:00) → Aggregates the last 7 days and sends a summarized report. Monthly Schedule (Day 1 at 08:00) → Aggregates the last 30 days for a deeper AI analysis. OpenAI Analysis → Generates insights, patterns, and 3 actionable recommendations. Gmail → Sends the full report (chart + AI text) to your inbox. 📊 Example Auto-Email Weekly Mood Summary (last 7 days) 🙂 5 ██████████ 😐 2 ████ 😩 0 Average: 1.7 (Positive 🙂) AI Insights: You’re trending upward this week — notes show that exercise days improved mood. Try keeping short walks mid-week to stabilize energy. 🧩 Requirements n8n Data Tables enabled OpenAI credential (GPT-4o or GPT-4 Turbo) Gmail OAuth2 credential to send summaries 🔧 Setup Instructions Connect your credentials: Add your own OpenAI and Gmail OAuth2 credentials. Set your Data Table ID: Open the Insert Mood Row node and enter your own Data Table ID. Without this, new moods won’t be stored. Replace the email placeholder: In the Gmail nodes, replace your.email@example.com with your actual address. Deploy and run: Send a test POST request to /mood (e.g. { "mood": "🙂", "note": "productive day" }) to log your first entry. ⚠️ Before activating the workflow, ensure you have configured the Data Table ID in the “Insert Mood Row” node. 🧠 AI Analysis Interprets mood patterns using GPT-4o. Highlights trends, potential triggers, and suggests 3 specific actions. Runs automatically every week and month. 🔒 Security No personal data is exposed outside your n8n instance. Always remove or anonymize credential references before sharing publicly. 💡 Ideal For Personal mood journaling and AI feedback Therapists tracking client progress Productivity or self-quantification projects 🗒️ Sticky Notes Guide 🟡 Mood Logging Webhook POST /mood receives mood + optional note. ⚠️ Configure your own Data Table ID in the “Insert Mood Row” node before running. 🟢 Weekly Summary Runs every Sunday 20:00 → aggregates last 7 days → generates AI insights + emails report. 🔵 Monthly Summary Runs on Day 1 at 08:00 → aggregates last 30 days → creates monthly reflection. 🟣 AI Analysis Uses OpenAI GPT-4o to interpret trends and recommend actions. 🟠 Email Delivery Sends formatted summaries to your inbox automatically.

Jose CastilloBy Jose Castillo
105