Back to Catalog

🛠️ Monday.com tool MCP Server 💪 all 18 operations

David AshbyDavid Ashby
178 views
2/3/2026
Official Page

Need help? Want access to this workflow + many more paid workflows + live Q&A sessions with a top verified n8n creator?

Join the community

Complete MCP server exposing all Monday.com Tool operations to AI agents. Zero configuration needed - all 18 operations pre-built.

⚡ Quick Setup

  1. Import this workflow into your n8n instance
  2. Activate the workflow to start your MCP server
  3. Copy the webhook URL from the MCP trigger node
  4. Connect AI agents using the MCP URL

🔧 How it Works

MCP Trigger: Serves as your server endpoint for AI agent requests • Tool Nodes: Pre-configured for every Monday.com Tool operation • AI Expressions: Automatically populate parameters via $fromAI() placeholders • Native Integration: Uses official n8n Monday.com Tool tool with full error handling

📋 Available Operations (18 total)

Every possible Monday.com Tool operation is included:

🔧 Board (4 operations)

Archive a boardCreate a boardGet a boardGet many boards

🔧 Boardcolumn (2 operations)

Create a board columnGet many board columns

🔧 Boardgroup (3 operations)

Delete a board groupCreate a board groupGet many board groups

🔧 Boarditem (9 operations)

Add an update to an itemChange a column value for a board itemChange multiple column values for a board itemCreate an item in a board's groupDelete an itemGet an itemGet items item by column valueGet many itemsMove an item to a group

🤖 AI Integration

Parameter Handling: AI agents automatically provide values for: • Resource IDs and identifiers • Search queries and filters • Content and data payloads • Configuration options

Response Format: Native Monday.com Tool API responses with full data structure

Error Handling: Built-in n8n error management and retry logic

💡 Usage Examples

Connect this MCP server to any AI agent or workflow:

Claude Desktop: Add MCP server URL to configuration • Custom AI Apps: Use MCP URL as tool endpoint • Other n8n Workflows: Call MCP tools from any workflow • API Integration: Direct HTTP calls to MCP endpoints

✨ Benefits

Complete Coverage: Every Monday.com Tool operation available • Zero Setup: No parameter mapping or configuration needed • AI-Ready: Built-in $fromAI() expressions for all parameters • Production Ready: Native n8n error handling and logging • Extensible: Easily modify or add custom logic

> 🆓 Free for community use! Ready to deploy in under 2 minutes.

# n8n MCP Server Trigger Workflow

This n8n workflow demonstrates the use of the Model Context Protocol (MCP) Server Trigger. It serves as a foundational example for building AI-powered workflows that interact with external AI models or services via the MCP.

## What it does

This workflow is a minimal example designed to:

1.  **Listen for MCP Requests**: The `MCP Server Trigger` node acts as an endpoint, waiting for incoming requests conforming to the Model Context Protocol.
2.  **Provide a Basic Entry Point**: It provides a starting point for any workflow that intends to receive and process AI-related requests using the MCP.
3.  **Include a Sticky Note**: A `Sticky Note` is included for documentation or to add quick notes within the workflow canvas.

## Prerequisites/Requirements

*   **n8n Instance**: An active n8n instance where this workflow can be imported and run.
*   **Understanding of Model Context Protocol (MCP)**: Familiarity with how the MCP works is beneficial for extending this workflow.

## Setup/Usage

1.  **Import the workflow**: Import the provided JSON into your n8n instance.
2.  **Activate the workflow**: Ensure the workflow is activated to start listening for incoming MCP requests.
3.  **Send MCP requests**: You can now send Model Context Protocol requests to the URL exposed by the `MCP Server Trigger` node. The exact URL will be displayed in the node's settings once the workflow is active.
4.  **Extend the workflow**: This workflow is a starting point. You would typically add more nodes after the `MCP Server Trigger` to process the incoming data, interact with AI models, perform database operations, or send responses.

Related Templates

Automate Dutch Public Procurement Data Collection with TenderNed

TenderNed Public Procurement What This Workflow Does This workflow automates the collection of public procurement data from TenderNed (the official Dutch tender platform). It: Fetches the latest tender publications from the TenderNed API Retrieves detailed information in both XML and JSON formats for each tender Parses and extracts key information like organization names, titles, descriptions, and reference numbers Filters results based on your custom criteria Stores the data in a database for easy querying and analysis Setup Instructions This template comes with sticky notes providing step-by-step instructions in Dutch and various query options you can customize. Prerequisites TenderNed API Access - Register at TenderNed for API credentials Configuration Steps Set up TenderNed credentials: Add HTTP Basic Auth credentials with your TenderNed API username and password Apply these credentials to the three HTTP Request nodes: "Tenderned Publicaties" "Haal XML Details" "Haal JSON Details" Customize filters: Modify the "Filter op ..." node to match your specific requirements Examples: specific organizations, contract values, regions, etc. How It Works Step 1: Trigger The workflow can be triggered either manually for testing or automatically on a daily schedule. Step 2: Fetch Publications Makes an API call to TenderNed to retrieve a list of recent publications (up to 100 per request). Step 3: Process & Split Extracts the tender array from the response and splits it into individual items for processing. Step 4: Fetch Details For each tender, the workflow makes two parallel API calls: XML endpoint - Retrieves the complete tender documentation in XML format JSON endpoint - Fetches metadata including reference numbers and keywords Step 5: Parse & Merge Parses the XML data and merges it with the JSON metadata and batch information into a single data structure. Step 6: Extract Fields Maps the raw API data to clean, structured fields including: Publication ID and date Organization name Tender title and description Reference numbers (kenmerk, TED number) Step 7: Filter Applies your custom filter criteria to focus on relevant tenders only. Step 8: Store Inserts the processed data into your database for storage and future analysis. Customization Tips Modify API Parameters In the "Tenderned Publicaties" node, you can adjust: offset: Starting position for pagination size: Number of results per request (max 100) Add query parameters for date ranges, status filters, etc. Add More Fields Extend the "Splits Alle Velden" node to extract additional fields from the XML/JSON data, such as: Contract value estimates Deadline dates CPV codes (procurement classification) Contact information Integrate Notifications Add a Slack, Email, or Discord node after the filter to get notified about new matching tenders. Incremental Updates Modify the workflow to only fetch new tenders by: Storing the last execution timestamp Adding date filters to the API query Only processing publications newer than the last run Troubleshooting No data returned? Verify your TenderNed API credentials are correct Check that you have setup youre filter proper Need help setting this up or interested in a complete tender analysis solution? Get in touch 🔗 LinkedIn – Wessel Bulte

Wessel BulteBy Wessel Bulte
247

AI-powered code review with linting, red-marked corrections in Google Sheets & Slack

Advanced Code Review Automation (AI + Lint + Slack) Who’s it for For software engineers, QA teams, and tech leads who want to automate intelligent code reviews with both AI-driven suggestions and rule-based linting — all managed in Google Sheets with instant Slack summaries. How it works This workflow performs a two-layer review system: Lint Check: Runs a lightweight static analysis to find common issues (e.g., use of var, console.log, unbalanced braces). AI Review: Sends valid code to Gemini AI, which provides human-like review feedback with severity classification (Critical, Major, Minor) and visual highlights (red/orange tags). Formatter: Combines lint and AI results, calculating an overall score (0–10). Aggregator: Summarizes results for quick comparison. Google Sheets Writer: Appends results to your review log. Slack Notification: Posts a concise summary (e.g., number of issues and average score) to your team’s channel. How to set up Connect Google Sheets and Slack credentials in n8n. Replace placeholders (<YOURSPREADSHEETID>, <YOURSHEETGIDORNAME>, <YOURSLACKCHANNEL_ID>). Adjust the AI review prompt or lint rules as needed. Activate the workflow — reviews will start automatically whenever new code is added to the sheet. Requirements Google Sheets and Slack integrations enabled A configured AI node (Gemini, OpenAI, or compatible) Proper permissions to write to your target Google Sheet How to customize Add more linting rules (naming conventions, spacing, forbidden APIs) Extend the AI prompt for project-specific guidelines Customize the Slack message formatting Export analytics to a dashboard (e.g., Notion or Data Studio) Why it’s valuable This workflow brings realistic, team-oriented AI-assisted code review to n8n — combining the speed of automated linting with the nuance of human-style feedback. It saves time, improves code quality, and keeps your team’s review history transparent and centralized.

higashiyama By higashiyama
90

🎓 How to transform unstructured email data into structured format with AI agent

This workflow automates the process of extracting structured, usable information from unstructured email messages across multiple platforms. It connects directly to Gmail, Outlook, and IMAP accounts, retrieves incoming emails, and sends their content to an AI-powered parsing agent built on OpenAI GPT models. The AI agent analyzes each email, identifies relevant details, and returns a clean JSON structure containing key fields: From – sender’s email address To – recipient’s email address Subject – email subject line Summary – short AI-generated summary of the email body The extracted information is then automatically inserted into an n8n Data Table, creating a structured database of email metadata and summaries ready for indexing, reporting, or integration with other tools. --- Key Benefits ✅ Full Automation: Eliminates manual reading and data entry from incoming emails. ✅ Multi-Source Integration: Handles data from different email providers seamlessly. ✅ AI-Driven Accuracy: Uses advanced language models to interpret complex or unformatted content. ✅ Structured Storage: Creates a standardized, query-ready dataset from previously unstructured text. ✅ Time Efficiency: Processes emails in real time, improving productivity and response speed. *✅ Scalability: Easily extendable to handle additional sources or extract more data fields. --- How it works This workflow automates the transformation of unstructured email data into a structured, queryable format. It operates through a series of connected steps: Email Triggering: The workflow is initiated by one of three different email triggers (Gmail, Microsoft Outlook, or a generic IMAP account), which constantly monitor for new incoming emails. AI-Powered Parsing & Structuring: When a new email is detected, its raw, unstructured content is passed to a central "Parsing Agent." This agent uses a specified OpenAI language model to intelligently analyze the email text. Data Extraction & Standardization: Following a predefined system prompt, the AI agent extracts key information from the email, such as the sender, recipient, subject, and a generated summary. It then forces the output into a strict JSON structure using a "Structured Output Parser" node, ensuring data consistency. Data Storage: Finally, the clean, structured data (the from, to, subject, and summarize fields) is inserted as a new row into a specified n8n Data Table, creating a searchable and reportable database of email information. --- Set up steps To implement this workflow, follow these configuration steps: Prepare the Data Table: Create a new Data Table within n8n. Define the columns with the following names and string type: From, To, Subject, and Summary. Configure Email Credentials: Set up the credential connections for the email services you wish to use (Gmail OAuth2, Microsoft Outlook OAuth2, and/or IMAP). Ensure the accounts have the necessary permissions to read emails. Configure AI Model Credentials: Set up the OpenAI API credential with a valid API key. The workflow is configured to use the model, but this can be changed in the respective nodes if needed. Connect the Nodes: The workflow canvas is already correctly wired. Visually confirm that the email triggers are connected to the "Parsing Agent," which is connected to the "Insert row" (Data Table) node. Also, ensure the "OpenAI Chat Model" and "Structured Output Parser" are connected to the "Parsing Agent" as its AI model and output parser, respectively. Activate the Workflow: Save the workflow and toggle the "Active" switch to ON. The triggers will begin polling for new emails according to their schedule (e.g., every minute), and the automation will start processing incoming messages. --- Need help customizing? Contact me for consulting and support or add me on Linkedin.

DavideBy Davide
1616