Back to Catalog

Build your own PostgreSQL MCP server

JimleukJimleuk
8932 views
2/3/2026
Official Page

This n8n demonstrates how to build a simple PostgreSQL MCP server to manage your PostgreSQL database such as HR, Payroll, Sale, Inventory and More!

This MCP example is based off an official MCP reference implementation which can be found here -https://github.com/modelcontextprotocol/servers/tree/main/src/postgres

How it works

  • A MCP server trigger is used and connected to 5 tools: 2 postgreSQL and 3 custom workflow.
  • The 2 postgreSQL tools are simple read-only queries and as such, the postgreSQL tool can be simply used.
  • The 3 custom workflow tools are used for select, insert and update queries as these are operations which require a bit more discretion.
  • Whilst it may be easier to allow the agent to use raw SQL queries, we may find it a little safer to just allow for the parameters instead. The custom workflow tool allows us to define this restricted schema for tool input which we'll use to construct the SQL statement ourselves.
  • All 3 custom workflow tools trigger the same "Execute workflow" trigger in this very template which has a switch to route the operation to the correct handler.
  • Finally, we use our standard PostgreSQL node to handle select, insert and update operations. The responses are then sent back to the the MCP client.

How to use

  • This PostgreSQL MCP server allows any compatible MCP client to manage a PostgreSQL database by supporting select, create and update operations. You will need to have a database available before you can use this server.
  • Connect your MCP client by following the n8n guidelines here - https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-langchain.mcptrigger/#integrating-with-claude-desktop
  • Try the following queries in your MCP client:
    • "Please help me check if Alex has an entry in the users table. If not, please help me create a record for her."
    • "What was the top selling product in the last week?"
    • "How many high priority support tickets are still open this morning?"

Requirements

  • PostgreSQL for database. This can be an external database such as Supabase or one you can host internally.
  • MCP Client or Agent for usage such as Claude Desktop - https://claude.ai/download

Customising this workflow

  • If the scope of schemas or tables is too open, try restrict it so the MCP serves a specific purpose for business operations. eg. Confine the querying and editing to HR only tables before providing access to people in that department.
  • Remember to set the MCP server to require credentials before going to production and sharing this MCP server with others!

n8n PostgreSQL MCP Server

This n8n workflow acts as a Model Context Protocol (MCP) server, allowing AI models to interact with a PostgreSQL database. It provides a structured way for AI agents to query and potentially manipulate data within a PostgreSQL instance, acting as a specialized tool for database operations.

What it does

This workflow simplifies the integration of AI models with PostgreSQL by:

  1. Listening for MCP Server Requests: It acts as an MCP server, waiting for incoming requests from AI models or other systems that adhere to the Model Context Protocol.
  2. Executing PostgreSQL Operations: Upon receiving a request, it uses the PostgreSQL node to perform database operations. The specific operation (e.g., query, insert, update) would be determined by the incoming MCP request.
  3. Routing Logic (Implicit): Although not explicitly configured with multiple branches in the provided JSON, the presence of a Switch node suggests that future enhancements could involve routing different types of MCP requests to various PostgreSQL operations or other actions.
  4. Calling Sub-Workflows (Implicit): The Call n8n Workflow Tool node indicates that this workflow can potentially delegate complex tasks to other n8n workflows, extending its capabilities beyond direct database interaction.
  5. Triggering Other Workflows (Implicit): The When Executed by Another Workflow node suggests it can also be invoked as a sub-workflow by a parent workflow, enabling modular and reusable AI tools.

Prerequisites/Requirements

  • n8n Instance: A running n8n instance to import and execute the workflow.
  • PostgreSQL Database: Access to a PostgreSQL database instance.
  • PostgreSQL Credentials: Configured n8n credentials for connecting to your PostgreSQL database.
  • Model Context Protocol (MCP) Client: An AI model or application capable of sending requests formatted according to the Model Context Protocol to this n8n workflow's webhook URL.

Setup/Usage

  1. Import the Workflow:
    • Copy the provided JSON code.
    • In your n8n instance, go to "Workflows" and click "New".
    • Click the three dots next to the workflow name and select "Import from JSON".
    • Paste the JSON code and click "Import".
  2. Configure PostgreSQL Credentials:
    • Locate the "Postgres" node.
    • Click on the "Credential" field and select an existing PostgreSQL credential or create a new one.
    • Enter your PostgreSQL database connection details (host, port, database, user, password).
  3. Activate the MCP Server Trigger:
    • Locate the "MCP Server Trigger" node.
    • Save and activate the workflow. This will expose a webhook URL that your MCP client can use to send requests.
  4. Integrate with your AI Model:
    • Configure your AI model or MCP client to send requests to the webhook URL provided by the "MCP Server Trigger" node. The requests should adhere to the Model Context Protocol specification for PostgreSQL operations.
    • The workflow will then process these requests, interact with the PostgreSQL database, and return a response to the MCP client.
  5. Optional: Configure Switch and Call Workflow Tool:
    • If you plan to extend the workflow's logic, configure the "Switch" node to route different types of MCP requests to specific branches.
    • Utilize the "Call n8n Workflow Tool" node to integrate other n8n workflows as sub-tools for more complex operations.

Related Templates

Track competitor SEO keywords with Decodo + GPT-4.1-mini + Google Sheets

This workflow automates competitor keyword research using OpenAI LLM and Decodo for intelligent web scraping. Who this is for SEO specialists, content strategists, and growth marketers who want to automate keyword research and competitive intelligence. Marketing analysts managing multiple clients or websites who need consistent SEO tracking without manual data pulls. Agencies or automation engineers using Google Sheets as an SEO data dashboard for keyword monitoring and reporting. What problem this workflow solves Tracking competitor keywords manually is slow and inconsistent. Most SEO tools provide limited API access or lack contextual keyword analysis. This workflow solves that by: Automatically scraping any competitor’s webpage with Decodo. Using OpenAI GPT-4.1-mini to interpret keyword intent, density, and semantic focus. Storing structured keyword insights directly in Google Sheets for ongoing tracking and trend analysis. What this workflow does Trigger — Manually start the workflow or schedule it to run periodically. Input Setup — Define the website URL and target country (e.g., https://dev.to, france). Data Scraping (Decodo) — Fetch competitor web content and metadata. Keyword Analysis (OpenAI GPT-4.1-mini) Extract primary and secondary keywords. Identify focus topics and semantic entities. Generate a keyword density summary and SEO strength score. Recommend optimization and internal linking opportunities. Data Structuring — Clean and convert GPT output into JSON format. Data Storage (Google Sheets) — Append structured keyword data to a Google Sheet for long-term tracking. Setup Prerequisites If you are new to Decode, please signup on this link visit.decodo.com n8n account with workflow editor access Decodo API credentials OpenAI API key Google Sheets account connected via OAuth2 Make sure to install the Decodo Community node. Create a Google Sheet Add columns for: primarykeywords, seostrengthscore, keyworddensity_summary, etc. Share with your n8n Google account. Connect Credentials Add credentials for: Decodo API credentials - You need to register, login and obtain the Basic Authentication Token via Decodo Dashboard OpenAI API (for GPT-4o-mini) Google Sheets OAuth2 Configure Input Fields Edit the “Set Input Fields” node to set your target site and region. Run the Workflow Click Execute Workflow in n8n. View structured results in your connected Google Sheet. How to customize this workflow Track Multiple Competitors → Use a Google Sheet or CSV list of URLs; loop through them using the Split In Batches node. Add Language Detection → Add a Gemini or GPT node before keyword analysis to detect content language and adjust prompts. Enhance the SEO Report → Expand the GPT prompt to include backlink insights, metadata optimization, or readability checks. Integrate Visualization → Connect your Google Sheet to Looker Studio for SEO performance dashboards. Schedule Auto-Runs → Use the Cron Node to run weekly or monthly for competitor keyword refreshes. Summary This workflow automates competitor keyword research using: Decodo for intelligent web scraping OpenAI GPT-4.1-mini for keyword and SEO analysis Google Sheets for live tracking and reporting It’s a complete AI-powered SEO intelligence pipeline ideal for teams that want actionable insights on keyword gaps, optimization opportunities, and content focus trends, without relying on expensive SEO SaaS tools.

Ranjan DailataBy Ranjan Dailata
161

Generate song lyrics and music from text prompts using OpenAI and Fal.ai Minimax

Spark your creativity instantly in any chat—turn a simple prompt like "heartbreak ballad" into original, full-length lyrics and a professional AI-generated music track, all without leaving your conversation. 📋 What This Template Does This chat-triggered workflow harnesses AI to generate detailed, genre-matched song lyrics (at least 600 characters) from user messages, then queues them for music synthesis via Fal.ai's minimax-music model. It polls asynchronously until the track is ready, delivering lyrics and audio URL back in chat. Crafts original, structured lyrics with verses, choruses, and bridges using OpenAI Submits to Fal.ai for melody, instrumentation, and vocals aligned to the style Handles long-running generations with smart looping and status checks Returns complete song package (lyrics + audio link) for seamless sharing 🔧 Prerequisites n8n account (self-hosted or cloud with chat integration enabled) OpenAI account with API access for GPT models Fal.ai account for AI music generation 🔑 Required Credentials OpenAI API Setup Go to platform.openai.com → API keys (sidebar) Click "Create new secret key" → Name it (e.g., "n8n Songwriter") Copy the key and add to n8n as "OpenAI API" credential type Test by sending a simple chat completion request Fal.ai HTTP Header Auth Setup Sign up at fal.ai → Dashboard → API Keys Generate a new API key → Copy it In n8n, create "HTTP Header Auth" credential: Name="Fal.ai", Header Name="Authorization", Header Value="Key [Your API Key]" Test with a simple GET to their queue endpoint (e.g., /status) ⚙️ Configuration Steps Import the workflow JSON into your n8n instance Assign OpenAI API credentials to the "OpenAI Chat Model" node Assign Fal.ai HTTP Header Auth to the "Generate Music Track", "Check Generation Status", and "Fetch Final Result" nodes Activate the workflow—chat trigger will appear in your n8n chat interface Test by messaging: "Create an upbeat pop song about road trips" 🎯 Use Cases Content Creators: YouTubers generating custom jingles for videos on the fly, streamlining production from idea to audio export Educators: Music teachers using chat prompts to create era-specific folk tunes for classroom discussions, fostering interactive learning Gift Personalization: Friends crafting anniversary R&B tracks from shared memories via quick chats, delivering emotional audio surprises Artist Brainstorming: Songwriters prototyping hip-hop beats in real-time during sessions, accelerating collaboration and iteration ⚠️ Troubleshooting Invalid JSON from AI Agent: Ensure the system prompt stresses valid JSON; test the agent standalone with a sample query Music Generation Fails (401/403): Verify Fal.ai API key has minimax-music access; check usage quotas in dashboard Status Polling Loops Indefinitely: Bump wait time to 45-60s for complex tracks; inspect fal.ai queue logs for bottlenecks Lyrics Under 600 Characters: Tweak agent prompt to enforce fuller structures like [V1][C][V2][B][C]; verify output length in executions

Daniel NkenchoBy Daniel Nkencho
601

Automate invoice processing with OCR, GPT-4 & Salesforce opportunity creation

PDF Invoice Extractor (AI) End-to-end pipeline: Watch Drive ➜ Download PDF ➜ OCR text ➜ AI normalize to JSON ➜ Upsert Buyer (Account) ➜ Create Opportunity ➜ Map Products ➜ Create OLI via Composite API ➜ Archive to OneDrive. --- Node by node (what it does & key setup) 1) Google Drive Trigger Purpose: Fire when a new file appears in a specific Google Drive folder. Key settings: Event: fileCreated Folder ID: google drive folder id Polling: everyMinute Creds: googleDriveOAuth2Api Output: Metadata { id, name, ... } for the new file. --- 2) Download File From Google Purpose: Get the file binary for processing and archiving. Key settings: Operation: download File ID: ={{ $json.id }} Creds: googleDriveOAuth2Api Output: Binary (default key: data) and original metadata. --- 3) Extract from File Purpose: Extract text from PDF (OCR as needed) for AI parsing. Key settings: Operation: pdf OCR: enable for scanned PDFs (in options) Output: JSON with OCR text at {{ $json.text }}. --- 4) Message a model (AI JSON Extractor) Purpose: Convert OCR text into strict normalized JSON array (invoice schema). Key settings: Node: @n8n/n8n-nodes-langchain.openAi Model: gpt-4.1 (or gpt-4.1-mini) Message role: system (the strict prompt; references {{ $json.text }}) jsonOutput: true Creds: openAiApi Output (per item): $.message.content → the parsed JSON (ensure it’s an array). --- 5) Create or update an account (Salesforce) Purpose: Upsert Buyer as Account using an external ID. Key settings: Resource: account Operation: upsert External Id Field: taxid_c External Id Value: ={{ $json.message.content.buyer.tax_id }} Name: ={{ $json.message.content.buyer.name }} Creds: salesforceOAuth2Api Output: Account record (captures Id) for downstream Opportunity. --- 6) Create an opportunity (Salesforce) Purpose: Create Opportunity linked to the Buyer (Account). Key settings: Resource: opportunity Name: ={{ $('Message a model').item.json.message.content.invoice.code }} Close Date: ={{ $('Message a model').item.json.message.content.invoice.issue_date }} Stage: Closed Won Amount: ={{ $('Message a model').item.json.message.content.summary.grand_total }} AccountId: ={{ $json.id }} (from Upsert Account output) Creds: salesforceOAuth2Api Output: Opportunity Id for OLI creation. --- 7) Build SOQL (Code / JS) Purpose: Collect unique product codes from AI JSON and build a SOQL query for PricebookEntry by Pricebook2Id. Key settings: pricebook2Id (hardcoded in script): e.g., 01sxxxxxxxxxxxxxxx Source lines: $('Message a model').first().json.message.content.products Output: { soql, codes } --- 8) Query PricebookEntries (Salesforce) Purpose: Fetch PricebookEntry.Id for each Product2.ProductCode. Key settings: Resource: search Query: ={{ $json.soql }} Creds: salesforceOAuth2Api Output: Items with Id, Product2.ProductCode (used for mapping). --- 9) Code in JavaScript (Build OLI payloads) Purpose: Join lines with PBE results and Opportunity Id ➜ build OpportunityLineItem payloads. Inputs: OpportunityId: ={{ $('Create an opportunity').first().json.id }} Lines: ={{ $('Message a model').first().json.message.content.products }} PBE rows: from previous node items Output: { body: { allOrNone:false, records:[{ OpportunityLineItem... }] } } Notes: Converts discount_total ➜ per-unit if needed (currently commented for standard pricing). Throws on missing PBE mapping or empty lines. --- 10) Create Opportunity Line Items (HTTP Request) Purpose: Bulk create OLIs via Salesforce Composite API. Key settings: Method: POST URL: https://<your-instance>.my.salesforce.com/services/data/v65.0/composite/sobjects Auth: salesforceOAuth2Api (predefined credential) Body (JSON): ={{ $json.body }} Output: Composite API results (per-record statuses). --- 11) Update File to One Drive Purpose: Archive the original PDF in OneDrive. Key settings: Operation: upload File Name: ={{ $json.name }} Parent Folder ID: onedrive folder id Binary Data: true (from the Download node) Creds: microsoftOneDriveOAuth2Api Output: Uploaded file metadata. --- Data flow (wiring) Google Drive Trigger → Download File From Google Download File From Google → Extract from File → Update File to One Drive Extract from File → Message a model Message a model → Create or update an account Create or update an account → Create an opportunity Create an opportunity → Build SOQL Build SOQL → Query PricebookEntries Query PricebookEntries → Code in JavaScript Code in JavaScript → Create Opportunity Line Items --- Quick setup checklist 🔐 Credentials: Connect Google Drive, OneDrive, Salesforce, OpenAI. 📂 IDs: Drive Folder ID (watch) OneDrive Parent Folder ID (archive) Salesforce Pricebook2Id (in the JS SOQL builder) 🧠 AI Prompt: Use the strict system prompt; jsonOutput = true. 🧾 Field mappings: Buyer tax id/name → Account upsert fields Invoice code/date/amount → Opportunity fields Product name must equal your Product2.ProductCode in SF. ✅ Test: Drop a sample PDF → verify: AI returns array JSON only Account/Opportunity created OLI records created PDF archived to OneDrive --- Notes & best practices If PDFs are scans, enable OCR in Extract from File. If AI returns non-JSON, keep “Return only a JSON array” as the last line of the prompt and keep jsonOutput enabled. Consider adding validation on parsing.warnings to gate Salesforce writes. For discounts/taxes in OLI: Standard OLI fields don’t support per-line discount amounts directly; model them in UnitPrice or custom fields. Replace the Composite API URL with your org’s domain or use the Salesforce node’s Bulk Upsert for simplicity.

Le NguyenBy Le Nguyen
942