Automatic Microsoft Outlook attachment storage to OneDrive with Excel logging
π₯ Save Email Attachments to OneDrive & Log Them in Excel
This workflow watches your Outlook inbox, automatically downloads file attachments (for example invoices), saves them into a specific OneDrive folder, and logs each file name into an Excel table. Optionally, it also posts a Microsoft Teams message to let you know that a new attachment has been processed.
β¨ What this workflow does
- Monitors a Microsoft Outlook mailbox for new emails.
- Fetches all attachments from each incoming message.
- Processes attachments one by one so every file is handled cleanly.
- Downloads each attachment as binary data.
- Uploads the file into a OneDrive folder (looked up by name).
- Appends a new row with the filename to an Excel table for tracking.
- Sends a Teams chat notification once an attachment has been uploaded (optional).
π§βπΌ Who this is for
This workflow is ideal for:
- Finance / accounting teams who receive invoices by email and want them stored centrally.
- Anyone who wants an βemail β OneDrive β Excel logβ pipeline without manual downloading and renaming.
- n8n users who work in a Microsoft 365 environment (Outlook, OneDrive, Excel, Teams).
β Requirements
Before you run the workflow, youβll need:
- A Microsoft Outlook account with permissions to read emails and attachments.
- A OneDrive / SharePoint drive with a target folder (the example uses a folder whose name matches the search in the
Get Folder IDnode, e.g.Testn8n). - An Excel workbook stored in OneDrive with:
- A worksheet and table already created.
- A column named
Filename(or adjust theSet Filename+ Excel node to match your column name).
- n8n credentials set up for:
- Microsoft Outlook
- Microsoft OneDrive
- Microsoft Excel
- Microsoft Teams (optional but used in this template)
π οΈ Setup steps
- Import the workflow JSON into your n8n instance.
- Configure credentials:
- Set your Outlook, OneDrive, Excel, and Teams credentials on the respective nodes.
- Adjust the mail trigger (
On Mail Received):- Optionally add filters (subject, sender, folder) if you only want to process invoices or a specific mailbox/folder.
- Set the OneDrive folder search (
Get Folder ID):- Update the
queryparameter to the exact name of the folder where attachments should be stored.
- Update the
- Point the Excel node to your workbook (
Append to Excel Log):- Use the dropdowns to select your workbook, worksheet and table.
- Ensure thereβs a
Filenamecolumn (or rename the field inSet Filenameto match your actual column).
- Activate the workflow:
- Once active, every new email that hits the trigger will have its attachments stored in OneDrive and logged in Excel.
π Integrations used
- Microsoft Outlook β trigger on incoming emails and download attachments.
- Microsoft OneDrive β search for folders and upload files.
- Microsoft Excel β append rows to a table in a workbook.
- Microsoft Teams β send notifications when attachments are processed.
Automatic Microsoft Outlook Attachment Storage to OneDrive with Excel Logging
This n8n workflow automates the process of saving attachments from new Microsoft Outlook emails to a specified folder in Microsoft OneDrive, and then logs the details of these attachments into a Microsoft Excel spreadsheet. This ensures that important files are automatically archived and their metadata is recorded for easy tracking and auditing.
What it does
- Monitors for New Emails: Continuously checks your Microsoft Outlook inbox for new emails.
- Processes Attachments: For each new email, it identifies and extracts any attached files.
- Uploads to OneDrive: Saves each extracted attachment to a designated folder within your Microsoft OneDrive account.
- Logs to Excel: Records key information about each saved attachment (e.g., file name, sender, date) into a specified Microsoft Excel spreadsheet.
Prerequisites/Requirements
To use this workflow, you will need:
- n8n Instance: A running instance of n8n.
- Microsoft Account: A Microsoft account with access to:
- Microsoft Outlook: For triggering on new emails.
- Microsoft OneDrive: For storing attachments.
- Microsoft Excel 365: For logging attachment details.
- Microsoft Credentials in n8n: Configured Microsoft credentials within n8n to connect to Outlook, OneDrive, and Excel.
Setup/Usage
- Import the Workflow: Download the provided JSON and import it into your n8n instance.
- Configure Microsoft Credentials:
- Ensure you have a Microsoft OAuth2 or API key credential set up in n8n that has permissions for Outlook, OneDrive, and Excel.
- If not, create new Microsoft credentials and link them to the respective nodes (
Microsoft Outlook Trigger,Microsoft OneDrive,Microsoft Excel 365).
- Configure Microsoft Outlook Trigger:
- Select the appropriate Microsoft credential.
- Specify the mailbox or folder you want to monitor for new emails.
- Configure Microsoft OneDrive Node:
- Select your Microsoft credential.
- Specify the "Operation" as "Upload File".
- Set the "Folder ID" or "Folder Path" where you want the attachments to be saved in OneDrive.
- Map the "File Name" and "File Content" from the incoming Outlook attachment data.
- Configure Microsoft Excel 365 Node:
- Select your Microsoft credential.
- Choose the "Operation" to "Add Row" (or similar, depending on your exact logging needs).
- Specify the "Workbook" and "Worksheet" where the data should be logged.
- Map the relevant data fields from the Outlook attachments (e.g.,
{{ $json.fileName }},{{ $json.senderEmail }},{{ $json.receivedDateTime }}) to the corresponding columns in your Excel sheet.
- Activate the Workflow: Once configured, activate the workflow to start monitoring for new emails and automating the attachment storage and logging.
This workflow is designed to be highly customizable. You can extend it to include additional filtering logic for specific attachments, send notifications via Microsoft Teams (as indicated by the presence of a Teams node in the JSON, though not directly connected in this basic flow), or integrate with other services as needed.
Related Templates
Automate interior design lead qualification with AI & human approval to Notion
Overview This automated workflow intelligently qualifies interior design leads, generates personalized client emails, and manages follow-up through a human-approval process. Built with n8n, Claude AI, Telegram approval, and Notion database integration. β οΈ Hosting Options This template works with both n8n Cloud and self-hosted instances. Most nodes are native to n8n, making it cloud-compatible out of the box. What This Template Does Automated Lead Management Pipeline: Captures client intake form submissions from website or n8n forms AI-powered classification into HOT/WARM/COLD categories based on budget, project scope, and commitment indicators Generates personalized outreach emails tailored to each lead type Human approval workflow via Telegram for quality control Email revision capability for rejected drafts Automated client email delivery via Gmail Centralized lead tracking in Notion database Key Features β Intelligent Lead Scoring: Analyzes 12+ data points including budget (AED), space count, project type, timeline, and style preferences β Personalized Communication: AI-generated emails reference specific client details, demonstrating genuine understanding β Quality Control: Human-in-the-loop approval via Telegram prevents errors before client contact β Smart Routing: Different workflows for qualified leads (meeting invitations) vs. unqualified leads (respectful alternatives) β Revision Loop: Rejected emails automatically route to revision agent for improvements β Database Integration: All leads stored in Notion for pipeline tracking and analytics Use Cases Interior design firms managing high-volume lead intake Architecture practices with complex qualification criteria Home renovation companies prioritizing project value Any service business requiring budget-based lead scoring Sales teams needing approval workflows before client contact Prerequisites Required Accounts & API Keys: Anthropic Claude API - For AI classification and email generation Telegram Bot Token - For approval notifications Gmail Account - For sending client emails (or any SMTP provider) Notion Account - For lead database storage n8n Account - Cloud or self-hosted instance Technical Requirements: Basic understanding of n8n workflows Ability to create Telegram bots via BotFather Gmail app password or OAuth setup Notion database with appropriate properties Setup Instructions Step 1: Clone and Import Template Copy this template to your n8n instance (cloud or self-hosted) All nodes will appear as inactive - this is normal Step 2: Configure Form Trigger Open the Client Intake Form Trigger node Choose your trigger type: For n8n forms: Configure form fields matching the template structure For webhook: Copy webhook URL and integrate with your website form Required form fields: First Name, Second Name, Email, Contact Number Project Address, Project Type, Spaces Included Budget Range, Completion Date, Style Preferences Involvement Level, Previous Experience, Inspiration Links Step 3: Set Up Claude AI Credentials Obtain API key from https://console.anthropic.com In n8n: Create new credential β Anthropic β Paste API key Apply credential to these nodes: AI Lead Scoring Engine Personalized Client Outreach Email Generator Email Revision Agent Step 4: Configure Telegram Approval Bot Create bot via Telegram's @BotFather Copy bot token Get your Telegram Chat ID (use @userinfobot) In n8n: Create Telegram credential with bot token Configure Human-in-the-Loop Email Approval node: Add your Chat ID Customize approval message format if desired Step 5: Set Up Gmail Sending Enable 2-factor authentication on Gmail account Generate app password: Google Account β Security β App Passwords In n8n: Create Gmail credential using app password Configure Client Email Delivery node with sender details Step 6: Connect Notion Database Create Notion integration at https://www.notion.so/my-integrations Copy integration token Create database with these properties: Client Name (Title), Email (Email), Contact Number (Phone) Project Address (Text), Project Type (Multi-select) Spaces Included (Text), Budget (Select), Timeline (Date) Classification (Select: HOT/WARM/COLD), Confidence (Select) Estimated Value (Number), Status (Select) Share database with your integration In n8n: Add Notion credential β Paste token Configure Notion Lead Database Manager with database ID Step 7: Customize Classification Rules (Optional) Open AI Lead Scoring Engine node Review classification criteria in the prompt: HOT: 500k+ AED, full renovations, 2+ spaces WARM: 100k+ AED, 2+ spaces COLD: <100k AED OR single space Adjust thresholds to match your business requirements Modify currency if not using AED Step 8: Personalize Email Templates Open Personalized Client Outreach Email Generator node Customize: Company name and branding Signature placeholders ([Your Name], [Title], etc.) Tone and style preferences Alternative designer recommendations for COLD leads Step 9: Test the Workflow Activate the workflow Submit a test form with sample data Monitor each node execution in n8n Check Telegram for approval message Verify email delivery and Notion database entry Step 10: Set Up Error Handling (Recommended) Add error workflow trigger Configure notifications for failed executions Set up retry logic for API failures Workflow Node Breakdown Client Intake Form Trigger Captures lead data from website forms or n8n native forms with all project details. AI Lead Scoring Engine Analyzes intake data using structured logic: budget validation, space counting, and multi-factor evaluation. Returns HOT/WARM/COLD classification with confidence scores. Lead Classification Router Routes leads into three priority workflows based on AI classification, optimizing resource allocation. Sales Team Email Notifier Sends instant alerts to sales representatives with complete lead details and AI reasoning for internal tracking. Personalized Client Outreach Email Generator AI-powered composer creating tailored responses demonstrating genuine understanding of client vision, adapted by lead type. Latest Email Version Controller Captures most recent email output ensuring only final approved version proceeds to delivery. Human-in-the-Loop Email Approval Telegram-based review checkpoint sending generated emails to team member for quality control before client delivery. Approval Decision Router Evaluates reviewer's response, routing approved emails to client delivery or rejected emails to revision agent. Email Revision Agent AI-powered editor refining rejected emails based on feedback while maintaining personalization and brand voice. Client Email Delivery Sends final approved personalized emails demonstrating understanding of project vision with clear next steps. Notion Lead Database Manager Records all potential clients with complete intake data, classification results, and tracking information for pipeline management. Customization Tips Adjust Classification Thresholds: Modify budget ranges and space requirements in the AI Lead Scoring Engine prompt to match your market and service level. Multi-Language Support: Update all AI agent prompts with instructions for your target language. Claude supports 100+ languages. Additional Routing: Add branches for special cases like urgent projects, VIP clients, or specific geographic regions. CRM Integration: Replace Notion with HubSpot, Salesforce, or Airtable using respective n8n nodes. SMS Notifications: Add Twilio node for immediate HOT lead alerts to mobile devices. Troubleshooting Issue: Telegram approval not received Verify bot token is correct Confirm chat ID matches your Telegram account Check bot is not blocked Issue: Claude API errors Verify API key validity and credits Check prompt length isn't exceeding token limits Review rate limits on your Anthropic plan Issue: Gmail not sending Confirm app password (not regular password) is used Check "Less secure app access" if using older method Verify daily sending limits not exceeded Issue: Notion database not updating Confirm integration has access to database Verify property names match exactly (case-sensitive) Check property types align with data being sent Template Metrics Execution Time: ~30-45 seconds per lead (including AI processing) API Calls: 2-3 Claude requests per lead (classification + email generation, +1 if revision) Cost Estimate: ~$0.05-0.15 per lead processed (based on Claude API pricing) Support & Community n8n Community Forum: https://community.n8n.io Template Issues: Report bugs or suggest improvements via n8n template feedback Claude Documentation: https://docs.anthropic.com Notion API Docs: https://developers.notion.com License This template is provided as-is under MIT license. Modify and adapt freely for your business needs. --- Version: 1.0 Last Updated: October 2025 Compatibility: n8n v1.0+ (Cloud & Self-Hosted), Claude API v2024-10+
Automated UGC video generator with Gemini images and SORA 2
This workflow automates the creation of user-generated-content-style product videos by combining Gemini's image generation with OpenAI's SORA 2 video generation. It accepts webhook requests with product descriptions, generates images and videos, stores them in Google Drive, and logs all outputs to Google Sheets for easy tracking. Main Use Cases Automate product video creation for e-commerce catalogs and social media. Generate UGC-style content at scale without manual design work. Create engaging video content from simple text prompts for marketing campaigns. Build a centralized library of product videos with automated tracking and storage. How it works The workflow operates as a webhook-triggered process, organized into these stages: Webhook Trigger & Input Accepts POST requests to the /create-ugc-video endpoint. Required payload includes: product prompt, video prompt, Gemini API key, and OpenAI API key. Image Generation (Gemini) Sends the product prompt to Google's Gemini 2.5 Flash Image model. Generates a product image based on the description provided. Data Extraction Code node extracts the base64 image data from Gemini's response. Preserves all prompts and API keys for subsequent steps. Video Generation (SORA 2) Sends the video prompt to OpenAI's SORA 2 API. Initiates video generation with specifications: 720x1280 resolution, 8 seconds duration. Returns a video generation job ID for polling. Video Status Polling Continuously checks video generation status via OpenAI API. If status is "completed": proceeds to download. If status is still processing: waits 1 minute and retries (polling loop). Video Download & Storage Downloads the completed video file from OpenAI. Uploads the MP4 file to Google Drive (root folder). Generates a shareable Google Drive link. Logging to Google Sheets Records all generation details in a tracking spreadsheet: Product description Video URL (Google Drive link) Generation status Timestamp Summary Flow: Webhook Request β Generate Product Image (Gemini) β Extract Image Data β Generate Video (SORA 2) β Poll Status β If Complete: Download Video β Upload to Google Drive β Log to Google Sheets β Return Response If Not Complete: Wait 1 Minute β Poll Status Again Benefits: Fully automated video creation pipeline from text to finished product. Scalable solution for generating multiple product videos on demand. Combines cutting-edge AI models (Gemini + SORA 2) for high-quality output. Centralized storage in Google Drive with automatic logging in Google Sheets. Flexible webhook interface allows integration with any application or service. Retry mechanism ensures videos are captured even with longer processing times. --- Created by Daniel Shashko
Track personal finances in Google Sheets with AI agent via Slack
Who's it for This workflow is perfect for individuals who want to maintain detailed financial records without the overhead of complex budgeting apps. If you prefer natural language over data entry forms and want an AI assistant to handle the bookkeeping, this template is for you. It's especially useful for: People who want to track cash and online transactions separately Anyone who lends money to friends/family and needs debt tracking Users comfortable with Slack as their primary interface Those who prefer conversational interactions over manual spreadsheet updates What it does This AI-powered finance tracker transforms your Slack workspace into a personal finance command center. Simply mention your bot with transactions in plain English (e.g., "βΉ500 cash food, borrowed βΉ1000 from John"), and the AI agent will: Parse transactions using natural language understanding via Google Gemini Calculate balance changes for cash and online accounts Show a preview of changes before saving anything Update Google Sheets only after you approve Track debts (who owes you, who you owe, repayments) Send daily reminders at 11 PM with current balances and active debts The workflow maintains conversational context using PostgreSQL memory, so you can say things like "yesterday's transactions" or "that payment to Sarah" and it understands the context. How it works Scheduled Daily Check-in (11 PM) Fetches current balances from Google Sheets Retrieves all active debts Formats and sends a Slack message with balance summary Prompts you to share the day's transactions AI Agent Transaction Processing When you mention the bot in Slack: Phase 1: Parse & Analyze Extracts amount, payment type (cash/online), category (food, travel, etc.) Identifies transaction type (expense, income, borrowed, lent, repaid) Stores conversation context in PostgreSQL memory Phase 2: Calculate & Preview Reads current balances from Google Sheets Calculates new balances based on transactions Shows formatted preview with projected changes Waits for your approval ("yes"/"no") Phase 3: Update Database (only after approval) Logs transactions with unique IDs and timestamps Updates debt records with person names and status Recalculates and stores new balances Handles debt lifecycle (Active β Settled) Phase 4: Confirmation Sends success message with updated balances Shows active debts summary Includes logging timestamp Requirements Essential Services: n8n instance (self-hosted or cloud) Slack workspace with admin access Google account Google Gemini API key PostgreSQL database Recommended: Claude AI model (mentioned in workflow notes as better alternative to Gemini) How to set up Google Sheets Setup Create a new Google Sheet with three tabs named exactly: Balances Tab: | Date | CashBalance | OnlineBalance | Total_Balance | |------|--------------|----------------|---------------| Transactions Tab: | TransactionID | Date | Time | Amount | PaymentType | Category | TransactionType | PersonName | Description | Added_At | |----------------|------|------|--------|--------------|----------|------------------|-------------|-------------|----------| Debts Tab: | PersonName | Amount | Type | Datecreated | Status | Notes | |-------------|--------|------|--------------|--------|-------| Add header rows and one initial balance row in the Balances tab with today's date and starting amounts. Slack App Setup Go to api.slack.com/apps and create a new app Under OAuth & Permissions, add these Bot Token Scopes: app_mentions:read chat:write channels:read Install the app to your workspace Copy the Bot User OAuth Token Create a dedicated channel (e.g., personal-finance-tracker) Invite your bot to the channel Google Gemini API Visit ai.google.dev Create an API key Save it for n8n credentials setup PostgreSQL Database Set up a PostgreSQL database (you can use Supabase free tier): Create a new project Note down connection details (host, port, database name, user, password) The workflow will auto-create the required table n8n Workflow Configuration Import the workflow and configure: A. Credentials Google Sheets OAuth2: Connect your Google account Slack API: Add your Bot User OAuth Token Google Gemini API: Add your API key PostgreSQL: Add database connection details B. Update Node Parameters All Google Sheets nodes: Select your finance spreadsheet Slack nodes: Select your finance channel Schedule Trigger: Adjust time if you prefer a different check-in hour (default: 11 PM) Postgres Chat Memory: Change sessionKey to something unique (e.g., financetrackeryour_name) Keep tableName as n8nchathistory_finance or rename consistently C. Slack Trigger Setup Activate the "Bot Mention trigger" node Copy the webhook URL from n8n In Slack App settings, go to Event Subscriptions Enable events and paste the webhook URL Subscribe to bot event: app_mention Save changes Test the Workflow Activate both workflow branches (scheduled and agent) In your Slack channel, mention the bot: @YourBot βΉ100 cash snacks Bot should respond with a preview Reply "yes" to approve Verify Google Sheets are updated How to customize Change Transaction Categories Edit the AI Agent's system message to add/remove categories. Current categories: travel, food, entertainment, utilities, shopping, health, education, other Modify Daily Check-in Time Change the Schedule Trigger's triggerAtHour value (0-23 in 24-hour format). Add Currency Support Replace βΉ with your currency symbol in: Format Daily Message code node AI Agent system prompt examples Switch AI Models The workflow uses Google Gemini, but notes recommend Claude. To switch: Replace "Google Gemini Chat Model" node Add Claude credentials Connect to AI Agent node Customize Debt Types Modify AI Agent's system prompt to change debt handling logic: Currently: IOwe and TheyOwe_Me You can add more types or change naming Add More Payment Methods Current: cash, online To add more (e.g., credit card): Update AI Agent prompt Modify Balances sheet structure Update balance calculation logic Change Approval Keywords Edit AI Agent's Phase 2 approval logic to recognize different approval phrases. Add Spending Analytics Extend the daily check-in to calculate: Weekly/monthly spending summaries Category-wise breakdowns Use additional Code nodes to process transaction history Important Notes β οΈ Never trigger with normal messages - Only use app mentions (@botname) to avoid infinite loops where the bot replies to its own messages. π‘ Context Awareness - The bot remembers conversation history, so you can reference "yesterday", "last week", or previous transactions naturally. π Data Privacy - All your financial data stays in your Google Sheets and PostgreSQL database. The AI only processes transaction text temporarily. π Backup Regularly - Export your Google Sheets periodically as backup. --- Pro Tips: Start with small test transactions to ensure everything works Use consistent person names for debt tracking The bot understands various formats: "βΉ500 cash food" = "paid 500 rupees in cash for food" You can batch transactions in one message: "βΉ100 travel, βΉ200 food, βΉ50 snacks"